Introduction to Stokes' Equation

John D. Cook

September 8, 1992

Abstract

These notes are based on Roger Temam's book on the Navier-Stokes equations. They cover the well-posedness and regularity results for the stationary Stokes equation for a bounded domain.

1 Function Spaces

Let Ω be an open set in \mathbb{R}^n with C^2 boundary Γ . Let $\mathcal{D}(\Omega)^n$ be the set of \mathbb{R}^n -valued smooth functions with compact support in Ω . Define

$$\mathcal{V} \equiv \{ \vec{u} \in \mathcal{D}(\Omega)^n : \operatorname{div} \vec{u} = 0 \}.$$

Let V be the closure of \mathcal{V} in $H_0^1(\Omega)^n$ and let H be the closure of \mathcal{V} in $L^2(\Omega)^n$. Note that for $\vec{u} = (u_1, \ldots, u_n)$ and $\vec{v} = (v_1, \ldots, v_n)$, the $L^2(\Omega)^n$ inner product is given by

$$(\vec{u}, \vec{v})_{L^2(\Omega)^n} = \sum_{i=1}^n (u_i, v_i)_{L^2(\Omega)}$$

and the $H^1(\Omega)^n$ inner product is given by

$$(\vec{u}, \vec{v})_{H^1(\Omega)^n} = \sum_{i=1}^n (u_i, v_i)_{H^1(\Omega)}$$

Define

$$E(\Omega) \equiv \{ \vec{u} \in L^2(\Omega)^n : \operatorname{div} \vec{u} \in L^2(\Omega) \}.$$

For \vec{u} and \vec{v} in $E(\Omega)$, define

$$(\vec{u}, \vec{v})_{E(\Omega)} = (\vec{u}, \vec{v})_{L^2(\Omega)^n} + (\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^2(\Omega)}.$$

Theorem 1 $\mathcal{D}(\Omega)^n$ is dense in $E(\Omega)$.

Proof The proof analogous to the proof that $\mathcal{D}(\Omega)$ is dense in $L^2(\Omega)$: for $\vec{u} \in E(\Omega)$, take the convolution of \vec{u} with a mollifier φ_{ε} . To see that $\varphi_{\varepsilon} * \vec{u} \in E(\Omega)$, note that

$$\operatorname{div}\left(\varphi_{\varepsilon} \ast \vec{u}\right) = \varphi_{\varepsilon} \ast \operatorname{div} \vec{u}$$

 \diamond

2 Trace Theorem

Let $\gamma_0 : H^1(\Omega) \to H^{1/2}(\Gamma)$ be the usual trace mapping and let $\ell_\Omega : H^{1/2}(\Gamma) \to H^1(\Omega)$ be defined by setting $\ell_\Omega(\varphi)$ equal to the solution to the Dirichlet problem on Ω with boundary data φ . Both are continuous linear maps. If we let $H^{-1/2}(\Gamma)$ denote the dual of $H^{1/2}(\Gamma)$ then

$$H^{1/2}(\Gamma) \hookrightarrow L^2(\Gamma) = L^2(\Gamma)' \hookrightarrow H^{-1/2}(\Gamma).$$

Theorem 2 There exists a continuous linear operator $\gamma_{\nu} : E(\Omega) \to H^{-1/2}(\Gamma)$ such that $\gamma_{\nu}\vec{u} = \vec{u} \cdot \nu$ for every $u \in \mathcal{D}(\Omega)^n$ where ν is the unit outward normal. Also, the following generalization of Stokes' theorem holds: for every $\vec{u} \in E(\Omega)$ and $w \in H^1(\Omega)$,

$$(\vec{u}, \operatorname{grad} w)_{L^2(\Omega)^n} + (\operatorname{div} \vec{u}, w)_{L^2(\Omega)} = \langle \gamma_{\nu}, \gamma_0 w \rangle.$$

Proof Define $X_u: H^{1/2} \to \mathbb{R}$ by

$$X_u \varphi = (\vec{u}, \operatorname{grad} w)_{L^2(\Omega)^n} + (\operatorname{div} \vec{u}, w)_{L^2(\Omega)}$$

for any w such that $\gamma_0 w = \varphi$. To see that X_u is well defined, suppose $\gamma_0 w_1 = \gamma_0 w_2$. Then $w = w_1 - w_2$ is in $H_0^1(\Omega)$ and hence is the limit of test functions w_{ε} . Then

$$(\vec{u}, \operatorname{grad} w_{\varepsilon})_{L^2(\Omega)^n} + (\operatorname{div} \vec{u}, w_{\varepsilon})_{L^2(\Omega)} = 0$$

by the classical Stokes theorem. Since γ_0 is continuous, the above equation holds for w as well as w_{ε} . Let $w = \ell_{\Omega}(\varphi)$. Applying Cauchy-Schwarz to $[\vec{u}, \operatorname{div} \vec{u}]$ and $[\operatorname{grad} w, w]$ yields

$$|X_u\varphi| \le \|\vec{u}\|_E \|w\|_{H^1}$$

and so

$$|X_u\varphi| \le c \|\vec{u}\|_E \|\varphi\|_{H^{1/2}}$$

for some c by the continuity of ℓ_{Ω} . Thus X_u is a continuous linear functional on $H^{1/2}(\Gamma)$ and there exists $g \in H^{-1/2}(\Gamma)$ such that $X_u \varphi = \langle g, \varphi \rangle$. Define $\gamma_{\nu} \vec{u} = g$. To see that γ_{ν} behaves correctly on smooth functions, let \vec{u} and w be smooth. Then

$$X_u(\gamma_0 w) = \int_{\Omega} \operatorname{div} \left(w \, \vec{u} \right) = \langle \vec{u} \cdot \nu, \gamma_0 w \rangle$$

by the classical Stokes theorem. Since the traces of smooth functions are dense in $H^{1/2}(\Gamma)$, the result holds by continuity.

Theorem 3 $\gamma_{\nu}: E(\Omega) \to H^{-1/2}(\Gamma)$ is onto.

Proof Given $\psi \in H^{1/2}(\Gamma)$, let

$$\phi = \psi - \frac{\langle \psi, 1 \rangle}{\langle 1, 1 \rangle}.$$

Since $\langle \phi, 1 \rangle = 0$, there exists a unique solution to the Neumann problem

$$p \in H^1(\Omega)$$
: $\Delta p = 0, \quad \frac{\partial p}{\partial \nu} = \varphi$

up to a constant. Thus grad p is unique. Let \vec{u}_0 be a C^1 function satisfying $\gamma_{\nu} = 1$. Then

$$\vec{u} \equiv \operatorname{grad} p + \frac{\langle \psi, 1 \rangle}{\langle 1, 1 \rangle} \vec{u}_0$$

satisfies $\gamma_{\nu}\vec{u} = \psi$. Also, the map $\psi \mapsto \vec{u}$ is continuous and linear.

 \diamond

Let $E_0(\Omega)$ be the closure of $\mathcal{D}(\Omega)^n$ in $E(\Omega)$.

Theorem 4 $E_0(\Omega) = \ker \gamma_{\nu}$.

Proof The proof is analogous to the proof that $H_0^1 = \ker \gamma_0$.

3 Characterization Theorems

3.1 Characterization of Gradients

Theorem 5 (De Rham) A necessary and sufficient condition for a distribution f to be the gradient of another distribution is for f to vanish on \mathcal{V} , the set of divergence-free test functions.

Assume from now on that Ω is bounded, unless otherwise stated.

Theorem 6 If a distribution p has all its derivatives in $L^2(\Omega)$, or $H^{-1}(\Omega)$, then p is in $L^2(\Omega)$. In the first case,

$$\|p\|_{L^2(\Omega)/\mathbb{R}} \le c(\Omega) \|\operatorname{grad} p\|_{L^2(\Omega)}.$$

In the second,

 $\|p\|_{L^2(\Omega)/\mathbb{R}} \le c(\Omega) \|\operatorname{grad} p\|_{H^{-1}(\Omega)}.$

Note that

$$L^{2}(\Omega)/\mathbb{R} = \{ u \in L^{2}(\Omega) : \int_{\Omega} u \, dx = 0 \},$$

the orthogonal complement of the constant functions.

Corollary 1 The divergence operator maps $H_0^1(\Omega)^n$ onto $L^2(\Omega)/\mathbb{R}$.

Proof Let $A: L^2(\Omega) \to H^{-1}(\Omega)^n$ be the gradient operator. A is bounded linear operator and Theorem 6 shows that A is an isomorphism onto Rg(A) and so Rg(A) is closed. It follows that $(\ker A)^{\perp} = Rg(A^*)$. But ker $A = \mathbb{R}$ and $A^* = -\operatorname{div}$.

3.2 Characterization of Spaces

Theorem 7 We may characterize H and its orthogonal complement in $L^2(\Omega)$ by

$$H = \{ \vec{u} \in L^{2}(\Omega)^{n} : \text{div } \vec{u} = 0 \text{ and } \gamma_{\nu} \vec{u} = 0 \}$$

and

$$H^{\perp} = \{ \vec{u} \in L^2(\Omega)^n : \vec{u} = \operatorname{grad} p \text{ for some } p \in H^1(\Omega) \}.$$

Proof Characterization of H^{\perp} . " \subseteq ": If \vec{u} is perpendicular to H, is perpendicular to \mathcal{V} and thus by De Rham's theorem, $\vec{u} = \operatorname{grad} p$ for some distribution p. Since $\vec{u} \in L^2(\Omega)$, Theorem 6 tells us $p \in L^2(\Omega)$ as well and so $p \in H^1(\Omega)$.

" \supseteq ": $(\operatorname{grad} p, \vec{v})_{L^2(\Omega)^n} = -(p, \operatorname{div} \vec{v})_{L^2(\Omega)} = 0$ for all $\vec{v} \in \mathcal{V}$ and thus for all $\vec{v} \in V$.

Characterization of H. " \subseteq ": If $\vec{u} \in H$, there exists a sequence \vec{u}_n converging to \vec{u} in $L^2(\Omega)$. div $\vec{u}_n = 0$ for all n. Since distributional differentiation is continuous on $L^2(\Omega)$, div $\vec{u} = 0$. This shows that \vec{u}_n not only converges in $L^2(\Omega)$ but also in $E(\Omega)$. Since γ_{ν} is continuous on $E(\Omega)$ and $\gamma_{\nu}\vec{u}_n = 0$, $\gamma_{\nu}\vec{u} = 0$.

" \supseteq ": H is a closed subspace of $L^2(\Omega)$ and thus any subspace properly containing it must contain an element of H^{\perp} . Suppose there exists a $\vec{u} \in H^{\perp}$ with div $\vec{u} = 0$ and $\gamma_{\nu}\vec{u} = 0$. $\vec{u} = \operatorname{grad} p$ for some $p \in L^2(\Omega)$ and

$$\operatorname{div}\left(\operatorname{grad} p\right) = \Delta p = 0, \qquad \gamma_{\nu} \operatorname{grad} p = 0.$$

Thus p is a solution to the Neumann problem with zero data and so must be constant. But $\vec{u} = \operatorname{grad} p$ and thus $\vec{u} = 0$.

Theorem 8 H^{\perp} can be split into the orthogonal spaces

$$H_1 \equiv \{ \vec{u} \in L^2(\Omega)^n : \vec{u} = \text{grad} \ p \text{ for some } p \in H^1(\Omega) \text{ and } \Delta p = 0 \},\$$

and

$$H_2 \equiv \{ \vec{u} \in L^2(\Omega)^n : \vec{u} = \text{grad } p \text{ for some } p \in H_0^1(\Omega) \}.$$

Theorem 9 $V = \{ \vec{u} \in H_0^1(\Omega)^n : \text{div } \vec{u} = 0 \}.$

Proof " \subseteq ": Follows from density of \mathcal{V} and continuity of differentiation.

" \supseteq ": Let W be the closed subspace of $H_0^1(\Omega)$ defined by the right side of the theorem statement. Suppose L is a functional defined on W which vanishes on V. Extend L to a functional on $H_0^1(\Omega)$. L vanishes on \mathcal{V} and thus equals grad p for some $p \in L^2(\Omega)$ by Theorems 5 and 6. But then $L(\vec{v}) = -(p, \operatorname{div} \vec{v}) = 0$ for all $\vec{v} \in W$ and so V = W.

We have assumed Ω is bounded. For general Ω 's, the relationship between V and the divergence free members of $H_0^1(\Omega)^n$ was an open question as of 1985.

The relationship between the various spaces may be summarized by the following diagram.

$$\begin{array}{cccccc} \mathcal{D}(\Omega)^n & H_0^1(\Omega)^n & L^2(\Omega)^n \\ \cup & \cup & \cup \\ \mathcal{V} & \subseteq & V & \subseteq & H & \subseteq & E_0 & \subseteq & E \end{array}$$

4 Variational Formulation of Stokes' Equation

4.1 Homogeneous Problem

The strong form of the homogeneous steady-state Stokes problem is to find a function \vec{u} representing velocity and a function p representing pressure such that

$$-v\Delta \vec{u} + \operatorname{grad} p = \vec{f} \in L^2(\Omega)^n \tag{1}$$

$$\operatorname{div} \vec{u} = 0 \in L^2(\Omega) \tag{2}$$

$$\gamma_0 \vec{u} = 0 \in H^{1/2}(\Gamma). \tag{3}$$

Here v represents kinematic viscosity, a positive constant. Also, the Laplacian is applied component-wise.

The divergence and boundary conditions on \vec{u} are equivalent to asking that \vec{u} be an element of $V \subseteq H$. Equation 1 says that $\vec{f} + v\Delta \vec{u}$ is an element of H^{\perp} . In this sense equation 1 and equations 2 and 3 are complementary.

Multiplication by a divergence-free test function $\vec{v} \in \mathcal{V}$ and integration by parts shows

$$v((\vec{u}, \vec{v})) = (\vec{f}, \vec{v})_{L^2(\Omega)^n}$$
(4)

for all $\vec{v} \in \mathcal{V}$ and thus for all $\vec{v} \in V$. Here $((\cdot, \cdot))$ is the principle part of the $H^1(\Omega)^n$ inner product.

Conversely, if $\vec{u} \in V$ satisfies equation 4 for all $\vec{v} \in \mathcal{V}$, then Theorems 5 and 6 show that

$$-v\Delta \vec{u} - \vec{f} = -\operatorname{grad} p$$

for some $p \in L^2(\Omega)$.

It is clear from the Lax-Milgram theorem that 4 is well posed even if Ω is only bounded in one direction, but our characterization of V depends on Ω being bounded. p is as uniquely determined as it could be: since only grad p appears in the equation, p could only possibly be unique up to a constant.

4.2 Non-Homogeneous Problem

Given $\vec{f} \in L^2(\Omega)^n$, $g \in L^2(\Omega)$, and $\vec{\varphi} \in H^{1/2}(\Gamma)^n$, we can solve

$$-v\Delta \vec{u} + \operatorname{grad} p = \vec{f} \in L^2(\Omega)^n \tag{5}$$

$$\operatorname{div} \vec{u} = g \in L^2(\Omega) \tag{6}$$

$$\gamma_0 \vec{u} = \vec{\varphi} \in H^{1/2}(\Gamma)^n \tag{7}$$

provided that

$$\int_{\Omega} g \, dx = \int_{\Gamma} \vec{\varphi} \cdot \nu \, ds. \tag{8}$$

Proof Pick $\vec{u}_0 \in H^1_0(\Omega)^n$ with $\gamma_0 \vec{u}_0 = \vec{\varphi}$. From the compatibility condition 8 and Stokes' formula,

$$\int_{\Omega} g - \operatorname{div} \vec{u}_0 \, dx = 0.$$

Thus by Corollary 1, there exits $\vec{u}_1 \in H_0^1(\Omega)^n$ with div $\vec{u}_1 = g - \text{div } \vec{u}_0$. If we let $\vec{v} = \vec{u} - \vec{u}_0 - \vec{u}_1$ then the non-homogeneous Stokes problem for \vec{u} reduces to the homogeneous Stokes problem for \vec{v} with \vec{f} replaced by $\vec{f} - v\Delta(\vec{u}_0 - \vec{u}_1)$.

5 Regularity

Theorem 10 Let $\Omega \subseteq \mathbb{R}^n$ be a bounded open with C^{m+2} boundary for a positive integer m. Let $1 < q < \infty$. Suppose that $\vec{u} \in W^{2,q}(\Omega)^n$ and $p \in W^{1,q}(\Omega)$ are solutions to the Stokes problem with data

$$\vec{f} \in W^{m,q}(\Omega)^n,$$
$$\vec{g} \in W^{m+1,q}(\Omega)^n, and$$
$$\vec{\varphi} \in W^{m+2-\frac{1}{q},q}(\Gamma)^n.$$

Then $\vec{u} \in W^{m+2,q}(\Omega)^n$ and $p \in W^{m+1,q}(\Omega)$. Also, there exists a constant $c(q, v, m, \Omega)$ such that

$$\|\vec{u}\| + \|p\| \le c\{\|\vec{f}\| + \|\vec{g}\| + \|\vec{\varphi}\| + d\|\vec{u}\|_{L^q(\Omega)^n}\}$$

where d = 0 for $q \ge 2$ and d = 1 otherwise.

The unsubscripted norms in the above inequality are taken to be the strongest norms which make sense. In the case of p this means

$$\|p\|_{W^{m+1,q}(\Omega)/\mathbb{R}}$$

since p is only determined up to a constant.

This document available at http://www.johndcook.com/NavierStokes.pdf.