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Abstract

These notes are based on Roger Temam’s book on the Navier-Stokes equations. They cover the
well-posedness and regularity results for the stationary Stokes equation for a bounded domain.

1 Function Spaces

Let Ω be an open set in IRn with C2 boundary Γ. Let D(Ω)n be the set of IRn-valued smooth functions
with compact support in Ω. Define

V ≡ {~u ∈ D(Ω)n : div ~u = 0}.

Let V be the closure of V in H1
0 (Ω)n and let H be the closure of V in L2(Ω)n. Note that for ~u =

(u1, . . . , un) and ~v = (v1, . . . , vn), the L2(Ω)n inner product is given by

(~u,~v)L2(Ω)n =

n∑
i=1

(ui, vi)L2(Ω)

and the H1(Ω)n inner product is given by

(~u,~v)H1(Ω)n =

n∑
i=1

(ui, vi)H1(Ω).

Define
E(Ω) ≡ {~u ∈ L2(Ω)n : div ~u ∈ L2(Ω)}.

For ~u and ~v in E(Ω), define

(~u,~v)E(Ω) = (~u,~v)L2(Ω)n + (div ~u,div~v)L2(Ω).

Theorem 1 D(Ω)n is dense in E(Ω).

Proof The proof analogous to the proof that D(Ω) is dense in L2(Ω): for ~u ∈ E(Ω), take the convolution
of ~u with a mollifier ϕε. To see that ϕε ∗ ~u ∈ E(Ω), note that

div (ϕε ∗ ~u) = ϕε ∗ div ~u.

♦
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2 Trace Theorem

Let γ0 : H1(Ω) → H1/2(Γ) be the usual trace mapping and let `Ω : H1/2(Γ) → H1(Ω) be defined by
setting `Ω(ϕ) equal to the solution to the Dirichlet problem on Ω with boundary data ϕ. Both are
continuous linear maps. If we let H−1/2(Γ) denote the dual of H1/2(Γ) then

H1/2(Γ) ↪→ L2(Γ) = L2(Γ)′ ↪→ H−1/2(Γ).

Theorem 2 There exists a continuous linear operator γν : E(Ω) → H−1/2(Γ) such that γν~u = ~u · ν
for every u ∈ D(Ω)n where ν is the unit outward normal. Also, the following generalization of Stokes’
theorem holds: for every ~u ∈ E(Ω) and w ∈ H1(Ω),

(~u, gradw)L2(Ω)n + (div ~u,w)L2(Ω) = 〈γν , γ0w〉.

Proof Define Xu : H1/2 → IR by

Xuϕ = (~u, gradw)L2(Ω)n + (div ~u,w)L2(Ω)

for any w such that γ0w = ϕ. To see that Xu is well defined, suppose γ0w1 = γ0w2. Then w = w1 − w2

is in H1
0 (Ω) and hence is the limit of test functions wε. Then

(~u, gradwε)L2(Ω)n + (div ~u,wε)L2(Ω) = 0

by the classical Stokes theorem. Since γ0 is continuous, the above equation holds for w as well as wε.
Let w = `Ω(ϕ). Applying Cauchy-Schwarz to [~u,div ~u] and [gradw,w] yields

|Xuϕ| ≤ ‖~u‖E‖w‖H1

and so
|Xuϕ| ≤ c‖~u‖E‖ϕ‖H1/2

for some c by the continuity of `Ω. Thus Xu is a continuous linear functional on H1/2(Γ) and there exists
g ∈ H−1/2(Γ) such that Xuϕ = 〈g, ϕ〉. Define γν~u = g. To see that γν behaves correctly on smooth
functions, let ~u and w be smooth. Then

Xu(γ0w) =

∫
Ω

div (w ~u) = 〈~u · ν, γ0w〉

by the classical Stokes theorem. Since the traces of smooth functions are dense in H1/2(Γ), the result
holds by continuity. ♦

Theorem 3 γν : E(Ω)→ H−1/2(Γ) is onto.

Proof Given ψ ∈ H1/2(Γ), let

φ = ψ − 〈ψ, 1〉〈1, 1〉 .

Since 〈φ, 1〉 = 0, there exists a unique solution to the Neumann problem

p ∈ H1(Ω) : ∆p = 0,
∂p

∂ν
= ϕ

up to a constant. Thus grad p is unique. Let ~u0 be a C1 function satisfying γν = 1. Then

~u ≡ grad p+
〈ψ, 1〉
〈1, 1〉 ~u0

satisfies γν~u = ψ. Also, the map ψ 7→ ~u is continuous and linear. ♦

Let E0(Ω) be the closure of D(Ω)n in E(Ω).
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Theorem 4 E0(Ω) = ker γν .

Proof The proof is analogous to the proof that H1
0 = ker γ0. ♦

3 Characterization Theorems

3.1 Characterization of Gradients

Theorem 5 (De Rham) A necessary and sufficient condition for a distribution f to be the gradient of
another distribution is for f to vanish on V, the set of divergence-free test functions.

Assume from now on that Ω is bounded, unless otherwise stated.

Theorem 6 If a distribution p has all its derivatives in L2(Ω), or H−1(Ω), then p is in L2(Ω). In the
first case,

‖p‖L2(Ω)/ IR ≤ c(Ω)‖grad p‖L2(Ω).

In the second,
‖p‖L2(Ω)/ IR ≤ c(Ω)‖grad p‖H−1(Ω).

Note that

L2(Ω)/ IR = {u ∈ L2(Ω) :

∫
Ω

u dx = 0},

the orthogonal complement of the constant functions.

Corollary 1 The divergence operator maps H1
0 (Ω)n onto L2(Ω)/ IR.

Proof Let A : L2(Ω)→ H−1(Ω)n be the gradient operator. A is bounded linear operator and Theorem
6 shows that A is an isomorphism onto Rg(A) and so Rg(A) is closed. It follows that (kerA)⊥ = Rg(A∗).
But kerA = IR and A∗ = −div . ♦

3.2 Characterization of Spaces

Theorem 7 We may characterize H and its orthogonal complement in L2(Ω) by

H = {~u ∈ L2(Ω)n : div ~u = 0 and γν~u = 0}

and
H⊥ = {~u ∈ L2(Ω)n : ~u = grad p for some p ∈ H1(Ω)}.

Proof Characterization of H⊥. “⊆”: If ~u is perpendicular to H, is perpendicular to V and thus by De
Rham’s theorem, ~u = grad p for some distribution p. Since ~u ∈ L2(Ω), Theorem 6 tells us p ∈ L2(Ω) as
well and so p ∈ H1(Ω).

“⊇”: (grad p,~v)L2(Ω)n = −(p, div ~v)L2(Ω) = 0 for all ~v ∈ V and thus for all ~v ∈ V .

Characterization of H. “⊆”: If ~u ∈ H, there exists a sequence ~un converging to ~u in L2(Ω). div ~un = 0
for all n. Since distributional differentiation is continuous on L2(Ω), div ~u = 0. This shows that ~un not
only converges in L2(Ω) but also in E(Ω). Since γν is continuous on E(Ω) and γν~un = 0, γν~u = 0.

“⊇”: H is a closed subspace of L2(Ω) and thus any subspace properly containing it must contain
an element of H⊥. Suppose there exists a ~u ∈ H⊥ with div ~u = 0 and γν~u = 0. ~u = grad p for some
p ∈ L2(Ω) and

div (grad p) = ∆p = 0, γνgrad p = 0.

Thus p is a solution to the Neumann problem with zero data and so must be constant. But ~u = grad p
and thus ~u = 0. ♦
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Theorem 8 H⊥ can be split into the orthogonal spaces

H1 ≡ {~u ∈ L2(Ω)n : ~u = grad p for some p ∈ H1(Ω) and ∆p = 0},

and
H2 ≡ {~u ∈ L2(Ω)n : ~u = grad p for some p ∈ H1

0 (Ω)}.

Theorem 9 V = {~u ∈ H1
0 (Ω)n : div ~u = 0}.

Proof “⊆”: Follows from density of V and continuity of differentiation.
“⊇”: Let W be the closed subspace of H1

0 (Ω) defined by the right side of the theorem statement.
Suppose L is a functional defined on W which vanishes on V . Extend L to a functional on H1

0 (Ω).
L vanishes on V and thus equals grad p for some p ∈ L2(Ω) by Theorems 5 and 6. But then L(~v) =
−(p, div~v) = 0 for all ~v ∈W and so V = W . ♦

We have assumed Ω is bounded. For general Ω’s, the relationship between V and the divergence free
members of H1

0 (Ω)n was an open question as of 1985.
The relationship between the various spaces may be summarized by the following diagram.

D(Ω)n H1
0 (Ω)n L2(Ω)n

∪ ∪ ∪
V ⊆ V ⊆ H ⊆ E0 ⊆ E

4 Variational Formulation of Stokes’ Equation

4.1 Homogeneous Problem

The strong form of the homogeneous steady-state Stokes problem is to find a function ~u representing
velocity and a function p representing pressure such that

−v∆~u+ grad p = ~f ∈ L2(Ω)n (1)

div ~u = 0 ∈ L2(Ω) (2)

γ0~u = 0 ∈ H1/2(Γ). (3)

Here v represents kinematic viscosity, a positive constant. Also, the Laplacian is applied component-wise.
The divergence and boundary conditions on ~u are equivalent to asking that ~u be an element of V ⊆ H.

Equation 1 says that ~f + v∆~u is an element of H⊥. In this sense equation 1 and equations 2 and 3 are
complementary.

Multiplication by a divergence-free test function ~v ∈ V and integration by parts shows

v((~u,~v)) = (~f,~v)L2(Ω)n (4)

for all ~v ∈ V and thus for all ~v ∈ V . Here ((·, ·)) is the principle part of the H1(Ω)n inner product.
Conversely, if ~u ∈ V satisfies equation 4 for all ~v ∈ V, then Theorems 5 and 6 show that

−v∆~u− ~f = −grad p

for some p ∈ L2(Ω).
It is clear from the Lax-Milgram theorem that 4 is well posed even if Ω is only bounded in one

direction, but our characterization of V depends on Ω being bounded. p is as uniquely determined as it
could be: since only grad p appears in the equation, p could only possibly be unique up to a constant.

4



4.2 Non-Homogeneous Problem

Given ~f ∈ L2(Ω)n, g ∈ L2(Ω), and ~ϕ ∈ H1/2(Γ)n, we can solve

−v∆~u+ grad p = ~f ∈ L2(Ω)n (5)

div ~u = g ∈ L2(Ω) (6)

γ0~u = ~ϕ ∈ H1/2(Γ)n (7)

provided that ∫
Ω

g dx =

∫
Γ

~ϕ · ν ds. (8)

Proof Pick ~u0 ∈ H1
0 (Ω)n with γ0~u0 = ~ϕ. From the compatibility condition 8 and Stokes’ formula,∫

Ω

g − div ~u0 dx = 0.

Thus by Corollary 1, there exits ~u1 ∈ H1
0 (Ω)n with div ~u1 = g − div ~u0. If we let ~v = ~u − ~u0 − ~u1 then

the non-homogeneous Stokes problem for ~u reduces to the homogeneous Stokes problem for ~v with ~f
replaced by ~f − v∆(~u0 − ~u1). ♦

5 Regularity

Theorem 10 Let Ω ⊆ IRn be a bounded open with Cm+2 boundary for a positive integer m. Let 1 < q <
∞.Suppose that ~u ∈W 2,q(Ω)n and p ∈W 1,q(Ω) are solutions to the Stokes problem with data

~f ∈Wm,q(Ω)n,

~g ∈Wm+1,q(Ω)n, and

~ϕ ∈Wm+2− 1
q
,q

(Γ)n.

Then ~u ∈Wm+2,q(Ω)n and p ∈Wm+1,q(Ω). Also, there exists a constant c(q, v,m,Ω) such that

‖~u‖+ ‖p‖ ≤ c{‖~f‖+ ‖~g‖+ ‖~ϕ‖+ d‖~u‖Lq(Ω)n}

where d = 0 for q ≥ 2 and d = 1 otherwise.

The unsubscripted norms in the above inequality are taken to be the strongest norms which make
sense. In the case of p this means

‖p‖Wm+1,q(Ω)/ IR

since p is only determined up to a constant.

This document available at http://www.johndcook.com/NavierStokes.pdf.
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