Introduction to Stokes' Equation

John D. Cook

September 8, 1992

Abstract

These notes are based on Roger Temam's book on the Navier-Stokes equations. They cover the well-posedness and regularity results for the stationary Stokes equation for a bounded domain.

1 Function Spaces

Let Ω be an open set in \mathbb{R}^{n} with C^{2} boundary Γ. Let $\mathcal{D}(\Omega)^{n}$ be the set of \mathbb{R}^{n}-valued smooth functions with compact support in Ω. Define

$$
\mathcal{V} \equiv\left\{\vec{u} \in \mathcal{D}(\Omega)^{n}: \operatorname{div} \vec{u}=0\right\}
$$

Let V be the closure of \mathcal{V} in $H_{0}^{1}(\Omega)^{n}$ and let H be the closure of \mathcal{V} in $L^{2}(\Omega)^{n}$. Note that for $\vec{u}=$ $\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$, the $L^{2}(\Omega)^{n}$ inner product is given by

$$
(\vec{u}, \vec{v})_{L^{2}(\Omega)^{n}}=\sum_{i=1}^{n}\left(u_{i}, v_{i}\right)_{L^{2}(\Omega)}
$$

and the $H^{1}(\Omega)^{n}$ inner product is given by

$$
(\vec{u}, \vec{v})_{H^{1}(\Omega)^{n}}=\sum_{i=1}^{n}\left(u_{i}, v_{i}\right)_{H^{1}(\Omega)} .
$$

Define

$$
E(\Omega) \equiv\left\{\vec{u} \in L^{2}(\Omega)^{n}: \operatorname{div} \vec{u} \in L^{2}(\Omega)\right\} .
$$

For \vec{u} and \vec{v} in $E(\Omega)$, define

$$
(\vec{u}, \vec{v})_{E(\Omega)}=(\vec{u}, \vec{v})_{L^{2}(\Omega)^{n}}+(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}(\Omega)} .
$$

Theorem $1 \mathcal{D}(\Omega)^{n}$ is dense in $E(\Omega)$.
Proof The proof analogous to the proof that $\mathcal{D}(\Omega)$ is dense in $L^{2}(\Omega)$: for $\vec{u} \in E(\Omega)$, take the convolution of \vec{u} with a mollifier φ_{ε}. To see that $\varphi_{\varepsilon} * \vec{u} \in E(\Omega)$, note that

$$
\operatorname{div}\left(\varphi_{\varepsilon} * \vec{u}\right)=\varphi_{\varepsilon} * \operatorname{div} \vec{u}
$$

2 Trace Theorem

Let $\gamma_{0}: H^{1}(\Omega) \rightarrow H^{1 / 2}(\Gamma)$ be the usual trace mapping and let $\ell_{\Omega}: H^{1 / 2}(\Gamma) \rightarrow H^{1}(\Omega)$ be defined by setting $\ell_{\Omega}(\varphi)$ equal to the solution to the Dirichlet problem on Ω with boundary data φ. Both are continuous linear maps. If we let $H^{-1 / 2}(\Gamma)$ denote the dual of $H^{1 / 2}(\Gamma)$ then

$$
H^{1 / 2}(\Gamma) \hookrightarrow L^{2}(\Gamma)=L^{2}(\Gamma)^{\prime} \hookrightarrow H^{-1 / 2}(\Gamma) .
$$

Theorem 2 There exists a continuous linear operator $\gamma_{\nu}: E(\Omega) \rightarrow H^{-1 / 2}(\Gamma)$ such that $\gamma_{\nu} \vec{u}=\vec{u} \cdot \nu$ for every $u \in \mathcal{D}(\Omega)^{n}$ where ν is the unit outward normal. Also, the following generalization of Stokes' theorem holds: for every $\vec{u} \in E(\Omega)$ and $w \in H^{1}(\Omega)$,

$$
(\vec{u}, \operatorname{grad} w)_{L^{2}(\Omega)^{n}}+(\operatorname{div} \vec{u}, w)_{L^{2}(\Omega)}=\left\langle\gamma_{\nu}, \gamma_{0} w\right\rangle .
$$

Proof Define $X_{u}: H^{1 / 2} \rightarrow \mathbb{R}$ by

$$
X_{u} \varphi=(\vec{u}, \operatorname{grad} w)_{L^{2}(\Omega)^{n}}+(\operatorname{div} \vec{u}, w)_{L^{2}(\Omega)}
$$

for any w such that $\gamma_{0} w=\varphi$. To see that X_{u} is well defined, suppose $\gamma_{0} w_{1}=\gamma_{0} w_{2}$. Then $w=w_{1}-w_{2}$ is in $H_{0}^{1}(\Omega)$ and hence is the limit of test functions w_{ε}. Then

$$
\left(\vec{u}, \operatorname{grad} w_{\varepsilon}\right)_{L^{2}(\Omega)^{n}}+\left(\operatorname{div} \vec{u}, w_{\varepsilon}\right)_{L^{2}(\Omega)}=0
$$

by the classical Stokes theorem. Since γ_{0} is continuous, the above equation holds for w as well as w_{ε}.
Let $w=\ell_{\Omega}(\varphi)$. Applying Cauchy-Schwarz to $[\vec{u}, \operatorname{div} \vec{u}]$ and $[\operatorname{grad} w, w]$ yields

$$
\left|X_{u} \varphi\right| \leq\|\vec{u}\|_{E}\|w\|_{H^{1}}
$$

and so

$$
\left|X_{u} \varphi\right| \leq c\|\vec{u}\|_{E}\|\varphi\|_{H^{1 / 2}}
$$

for some c by the continuity of ℓ_{Ω}. Thus X_{u} is a continuous linear functional on $H^{1 / 2}(\Gamma)$ and there exists $g \in H^{-1 / 2}(\Gamma)$ such that $X_{u} \varphi=\langle g, \varphi\rangle$. Define $\gamma_{\nu} \vec{u}=g$. To see that γ_{ν} behaves correctly on smooth functions, let \vec{u} and w be smooth. Then

$$
X_{u}\left(\gamma_{0} w\right)=\int_{\Omega} \operatorname{div}(w \vec{u})=\left\langle\vec{u} \cdot \nu, \gamma_{0} w\right\rangle
$$

by the classical Stokes theorem. Since the traces of smooth functions are dense in $H^{1 / 2}(\Gamma)$, the result holds by continuity.

Theorem $3 \gamma_{\nu}: E(\Omega) \rightarrow H^{-1 / 2}(\Gamma)$ is onto.
Proof Given $\psi \in H^{1 / 2}(\Gamma)$, let

$$
\phi=\psi-\frac{\langle\psi, 1\rangle}{\langle 1,1\rangle} .
$$

Since $\langle\phi, 1\rangle=0$, there exists a unique solution to the Neumann problem

$$
p \in H^{1}(\Omega): \quad \Delta p=0, \quad \frac{\partial p}{\partial \nu}=\varphi
$$

up to a constant. Thus grad p is unique. Let \vec{u}_{0} be a C^{1} function satisfying $\gamma_{\nu}=1$. Then

$$
\vec{u} \equiv \operatorname{grad} p+\frac{\langle\psi, 1\rangle}{\langle 1,1\rangle} \vec{u}_{0}
$$

satisfies $\gamma_{\nu} \vec{u}=\psi$. Also, the map $\psi \mapsto \vec{u}$ is continuous and linear.
Let $E_{0}(\Omega)$ be the closure of $\mathcal{D}(\Omega)^{n}$ in $E(\Omega)$.

Theorem $4 E_{0}(\Omega)=\operatorname{ker} \gamma_{\nu}$.
Proof The proof is analogous to the proof that $H_{0}^{1}=\operatorname{ker} \gamma_{0}$.

3 Characterization Theorems

3.1 Characterization of Gradients

Theorem 5 (De Rham) A necessary and sufficient condition for a distribution f to be the gradient of another distribution is for f to vanish on \mathcal{V}, the set of divergence-free test functions.

Assume from now on that Ω is bounded, unless otherwise stated.
Theorem 6 If a distribution p has all its derivatives in $L^{2}(\Omega)$, or $H^{-1}(\Omega)$, then p is in $L^{2}(\Omega)$. In the first case,

$$
\|p\|_{L^{2}(\Omega) / \mathbb{R}} \leq c(\Omega)\|\operatorname{grad} p\|_{L^{2}(\Omega)}
$$

In the second,

$$
\|p\|_{L^{2}(\Omega) / \mathbb{R}} \leq c(\Omega)\|\operatorname{grad} p\|_{H^{-1}(\Omega)}
$$

Note that

$$
L^{2}(\Omega) / \mathbb{R}=\left\{u \in L^{2}(\Omega): \int_{\Omega} u d x=0\right\}
$$

the orthogonal complement of the constant functions.
Corollary 1 The divergence operator maps $H_{0}^{1}(\Omega)^{n}$ onto $L^{2}(\Omega) / \mathbb{R}$.
Proof Let $A: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}$ be the gradient operator. A is bounded linear operator and Theorem 6 shows that A is an isomorphism onto $\operatorname{Rg}(A)$ and so $R g(A)$ is closed. It follows that (ker $A)^{\perp}=R g\left(A^{*}\right)$. But ker $A=\mathbb{R}$ and $A^{*}=-\operatorname{div}$.

3.2 Characterization of Spaces

Theorem 7 We may characterize H and its orthogonal complement in $L^{2}(\Omega)$ by

$$
H=\left\{\vec{u} \in L^{2}(\Omega)^{n}: \operatorname{div} \vec{u}=0 \text { and } \gamma_{\nu} \vec{u}=0\right\}
$$

and

$$
H^{\perp}=\left\{\vec{u} \in L^{2}(\Omega)^{n}: \vec{u}=\operatorname{grad} p \text { for some } p \in H^{1}(\Omega)\right\}
$$

Proof Characterization of H^{\perp}. " \subseteq ": If \vec{u} is perpendicular to H, is perpendicular to \mathcal{V} and thus by De Rham's theorem, $\vec{u}=\operatorname{grad} p$ for some distribution p. Since $\vec{u} \in L^{2}(\Omega)$, Theorem 6 tells us $p \in L^{2}(\Omega)$ as well and so $p \in H^{1}(\Omega)$.
" \supseteq ": $(\operatorname{grad} p, \vec{v})_{L^{2}(\Omega)^{n}}=-(p, \operatorname{div} \vec{v})_{L^{2}(\Omega)}=0$ for all $\vec{v} \in \mathcal{V}$ and thus for all $\vec{v} \in V$.
Characterization of H. " \subseteq ": If $\vec{u} \in H$, there exists a sequence \vec{u}_{n} converging to \vec{u} in $L^{2}(\Omega)$. $\operatorname{div} \vec{u}_{n}=0$ for all n. Since distributional differentiation is continuous on $L^{2}(\Omega)$, $\operatorname{div} \vec{u}=0$. This shows that \vec{u}_{n} not only converges in $L^{2}(\Omega)$ but also in $E(\Omega)$. Since γ_{ν} is continuous on $E(\Omega)$ and $\gamma_{\nu} \vec{u}_{n}=0, \gamma_{\nu} \vec{u}=0$.
" \supseteq ": H is a closed subspace of $L^{2}(\Omega)$ and thus any subspace properly containing it must contain an element of H^{\perp}. Suppose there exists a $\vec{u} \in H^{\perp}$ with $\operatorname{div} \vec{u}=0$ and $\gamma_{\nu} \vec{u}=0 . \vec{u}=\operatorname{grad} p$ for some $p \in L^{2}(\Omega)$ and

$$
\operatorname{div}(\operatorname{grad} p)=\Delta p=0, \quad \gamma_{\nu} \operatorname{grad} p=0
$$

Thus p is a solution to the Neumann problem with zero data and so must be constant. But $\vec{u}=\operatorname{grad} p$ and thus $\vec{u}=0$.

Theorem $8 H^{\perp}$ can be split into the orthogonal spaces

$$
H_{1} \equiv\left\{\vec{u} \in L^{2}(\Omega)^{n}: \vec{u}=\operatorname{grad} p \text { for some } p \in H^{1}(\Omega) \text { and } \Delta p=0\right\}
$$

and

$$
H_{2} \equiv\left\{\vec{u} \in L^{2}(\Omega)^{n}: \vec{u}=\operatorname{grad} p \text { for some } p \in H_{0}^{1}(\Omega)\right\} .
$$

Theorem $9 V=\left\{\vec{u} \in H_{0}^{1}(\Omega)^{n}: \operatorname{div} \vec{u}=0\right\}$.
Proof " \subseteq ": Follows from density of \mathcal{V} and continuity of differentiation.
" \supseteq ": Let W be the closed subspace of $H_{0}^{1}(\Omega)$ defined by the right side of the theorem statement. Suppose L is a functional defined on W which vanishes on V. Extend L to a functional on $H_{0}^{1}(\Omega)$. L vanishes on \mathcal{V} and thus equals $\operatorname{grad} p$ for some $p \in L^{2}(\Omega)$ by Theorems 5 and 6. But then $L(\vec{v})=$ $-(p, \operatorname{div} \vec{v})=0$ for all $\vec{v} \in W$ and so $V=W$.

We have assumed Ω is bounded. For general Ω 's, the relationship between V and the divergence free members of $H_{0}^{1}(\Omega)^{n}$ was an open question as of 1985 .

The relationship between the various spaces may be summarized by the following diagram.

$$
\begin{array}{cccccccc}
\mathcal{D}(\Omega)^{n} & & H_{0}^{1}(\Omega)^{n} & & L^{2}(\Omega)^{n} & & & \\
& \cup & & & \\
\cup & & \cup & & \cup & & & \\
\mathcal{V} & \subseteq & V & \subseteq & H & \subseteq & E_{0} & \subseteq
\end{array}
$$

4 Variational Formulation of Stokes' Equation

4.1 Homogeneous Problem

The strong form of the homogeneous steady-state Stokes problem is to find a function \vec{u} representing velocity and a function p representing pressure such that

$$
\begin{array}{r}
-v \Delta \vec{u}+\operatorname{grad} p=\vec{f} \in L^{2}(\Omega)^{n} \\
\operatorname{div} \vec{u}=0 \in L^{2}(\Omega) \\
\gamma_{0} \vec{u}=0 \in H^{1 / 2}(\Gamma) . \tag{3}
\end{array}
$$

Here v represents kinematic viscosity, a positive constant. Also, the Laplacian is applied component-wise.
The divergence and boundary conditions on \vec{u} are equivalent to asking that \vec{u} be an element of $V \subseteq H$. Equation 1 says that $\vec{f}+v \Delta \vec{u}$ is an element of H^{\perp}. In this sense equation 1 and equations 2 and 3 are complementary.

Multiplication by a divergence-free test function $\vec{v} \in \mathcal{V}$ and integration by parts shows

$$
\begin{equation*}
v((\vec{u}, \vec{v}))=(\vec{f}, \vec{v})_{L^{2}(\Omega)^{n}} \tag{4}
\end{equation*}
$$

for all $\vec{v} \in \mathcal{V}$ and thus for all $\vec{v} \in V$. Here $((\cdot, \cdot))$ is the principle part of the $H^{1}(\Omega)^{n}$ inner product.
Conversely, if $\vec{u} \in V$ satisfies equation 4 for all $\vec{v} \in \mathcal{V}$, then Theorems 5 and 6 show that

$$
-v \Delta \vec{u}-\vec{f}=-\operatorname{grad} p
$$

for some $p \in L^{2}(\Omega)$.
It is clear from the Lax-Milgram theorem that 4 is well posed even if Ω is only bounded in one direction, but our characterization of V depends on Ω being bounded. p is as uniquely determined as it could be: since only grad p appears in the equation, p could only possibly be unique up to a constant.

4.2 Non-Homogeneous Problem

Given $\vec{f} \in L^{2}(\Omega)^{n}, g \in L^{2}(\Omega)$, and $\vec{\varphi} \in H^{1 / 2}(\Gamma)^{n}$, we can solve

$$
\begin{array}{r}
-v \Delta \vec{u}+\operatorname{grad} p=\vec{f} \in L^{2}(\Omega)^{n} \\
\operatorname{div} \vec{u}=g \in L^{2}(\Omega) \\
\gamma_{0} \vec{u}=\vec{\varphi} \in H^{1 / 2}(\Gamma)^{n} \tag{7}
\end{array}
$$

provided that

$$
\begin{equation*}
\int_{\Omega} g d x=\int_{\Gamma} \vec{\varphi} \cdot \nu d s \tag{8}
\end{equation*}
$$

Proof Pick $\vec{u}_{0} \in H_{0}^{1}(\Omega)^{n}$ with $\gamma_{0} \vec{u}_{0}=\vec{\varphi}$. From the compatibility condition 8 and Stokes' formula,

$$
\int_{\Omega} g-\operatorname{div} \vec{u}_{0} d x=0
$$

Thus by Corollary 1 , there exits $\vec{u}_{1} \in H_{0}^{1}(\Omega)^{n}$ with $\operatorname{div} \vec{u}_{1}=g-\operatorname{div} \vec{u}_{0}$. If we let $\vec{v}=\vec{u}-\vec{u}_{0}-\vec{u}_{1}$ then the non-homogeneous Stokes problem for \vec{u} reduces to the homogeneous Stokes problem for \vec{v} with \vec{f} replaced by $\vec{f}-v \Delta\left(\vec{u}_{0}-\vec{u}_{1}\right)$.

5 Regularity

Theorem 10 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded open with C^{m+2} boundary for a positive integer m. Let $1<q<$ ∞.Suppose that $\vec{u} \in W^{2, q}(\Omega)^{n}$ and $p \in W^{1, q}(\Omega)$ are solutions to the Stokes problem with data

$$
\begin{gathered}
\vec{f} \in W^{m, q}(\Omega)^{n}, \\
\vec{g} \in W^{m+1, q}(\Omega)^{n}, \text { and } \\
\vec{\varphi} \in W^{m+2-\frac{1}{q}, q}(\Gamma)^{n} .
\end{gathered}
$$

Then $\vec{u} \in W^{m+2, q}(\Omega)^{n}$ and $p \in W^{m+1, q}(\Omega)$. Also, there exists a constant $c(q, v, m, \Omega)$ such that

$$
\|\vec{u}\|+\|p\| \leq c\left\{\|\vec{f}\|+\|\vec{g}\|+\|\vec{\varphi}\|+d\|\vec{u}\|_{L^{q}(\Omega)^{n}}\right\}
$$

where $d=0$ for $q \geq 2$ and $d=1$ otherwise.
The unsubscripted norms in the above inequality are taken to be the strongest norms which make sense. In the case of p this means

$$
\|p\|_{W^{m+1, q}(\Omega) / \mathbb{R}}
$$

since p is only determined up to a constant.

