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Abstract

These notes are based on Roger Temam’s book on the Navier-Stokes equations. They cover the
well-posedness and regularity results for the stationary Stokes equation for a bounded domain.

1 Function Spaces

Let Q be an open set in R™ with C? boundary T. Let D(Q)™ be the set of R™-valued smooth functions
with compact support in 2. Define

V={aeDQ)":divd = 0}.
Let V be the closure of V in Hj(Q)™ and let H be the closure of V in L?(2)". Note that for @ =
(u1,...,un) and ¥ = (v1,...,vs), the L*(Q)™ inner product is given by

n

(T, V) L2(oyn = Z(Ui,vi)LQ(Q)
=1
and the H' ()" inner product is given by

n

(4, ﬁ)Hl(Q)" = Z(ui7vi)H1(Q)-

i=1
Define
EQ) = {de L*(Q)" :divi € L*(Q)}.
For @ and ¥ in E(Q), define

—

(ﬁ, U)E(Q) = (’J, v)LQ(Q)" + (le ﬁ, div 17)L2(Q) .

Theorem 1 D(Q)" is dense in E(Q).

Proof The proof analogous to the proof that D(Q) is dense in L*(Q): for @ € E(1Q), take the convolution
of @ with a mollifier .. To see that ¢. *x @ € E(f2), note that

div (e * @) = pe xdivd.



2 Trace Theorem

Let vo : HY(Q) — HY?(I") be the usual trace mapping and let £o : HY2(I') — H(Q) be defined by
setting £o(¢) equal to the solution to the Dirichlet problem on Q with boundary data ¢. Both are
continuous linear maps. If we let H~/?(T") denote the dual of H/?(T) then

HY2(T) — L*(T) = L*(T) — H~Y*(I).

Theorem 2 There exists a continuous linear operator ~, : E(Q) — H™Y*(T') such that v, @ = @ - v
for every u € D(Q)"™ where v is the unit outward normal. Also, the following generalization of Stokes’
theorem holds: for every @ € E(Q) and w € H*(Q),

(@, grad w) L2 (gyn + (div @, w)p2(q) = (Yo, Yow).

Proof Define X, : H/? = R by

Xup = (4, grad w) p2(qyn + (div i, w) p2(q)
for any w such that yow = ¢. To see that X, is well defined, suppose yow1 = Yowz. Then w = w1 — w2
is in Hj(Q) and hence is the limit of test functions w.. Then

(’lj, grad wg)L2<Q)n + (le ’L_[, wg)L2(Q) =0
by the classical Stokes theorem. Since vy is continuous, the above equation holds for w as well as w,.

Let w = £a(p). Applying Cauchy-Schwarz to [@, div ] and [grad w, w] yields
[ Xue| < |ldllellwll g
and so
| Xue| < clldllellell g2

for some c by the continuity of ¢n. Thus X, is a continuous linear functional on H 1/ 2(1") and there exists

g € Hil/z(F) such that X, = (g,¢). Define v, % = g. To see that v, behaves correctly on smooth
functions, let ¥ and w be smooth. Then

Xy (yow) = / div (w @) = (@ - v, yow)

by the classical Stokes theorem. Since the traces of smooth functions are dense in H'/?(T), the result
holds by continuity. &

Theorem 3 7, : E(Q) — H~'/2(T) is onto.

Proof Given ¢ € H'/?(T), let

_ (¥, 1)
P=v- (1,1)°

Since (¢, 1) = 0, there exists a unique solution to the Neumann problem
dp

H'(Q) : Ap=0, L =
peH () p=0, =

up to a constant. Thus grad p is unique. Let i be a C! function satisfying v, = 1. Then

(1)
a1’

satisfies 7,4 = 1. Also, the map v — @ is continuous and linear. &

Let Eo(£2) be the closure of D(2)" in E(Q).

U = gradp +



Theorem 4 Ey(Q2) = ker-,.

Proof The proof is analogous to the proof that Hy = ker vo. &

3 Characterization Theorems

3.1 Characterization of Gradients

Theorem 5 (De Rham) A necessary and sufficient condition for a distribution f to be the gradient of
another distribution is for f to vanish on V, the set of divergence-free test functions.

Assume from now on that €2 is bounded, unless otherwise stated.

Theorem 6 If a distribution p has all its derivatives in L*(Q), or H™*(Q), then p is in L*(Q). In the
first case,

IpllL20)y, r < c(Q)]lgrad pllLz(o)-
In the second,

||p||L2(Q)/1R < C(Q)”gradp||H—1(Q)~

Note that
L*(Q)/R={uec L*Q): / udz = 0},
Q

the orthogonal complement of the constant functions.

Corollary 1 The divergence operator maps Hg ()™ onto L*(Q)/ R.

Proof Let A: L*(Q) — H™' ()" be the gradient operator. A is bounded linear operator and Theorem
6 shows that A is an isomorphism onto Rg(A) and so Rg(A) is closed. It follows that (ker A)* = Rg(A*).
But ker A =R and A* = —div. &

3.2 Characterization of Spaces
Theorem 7 We may characterize H and its orthogonal complement in L> (Q) by
H={aecL*Q)":divi =0 and i = 0}

and
H' ={i e L*(Q)": @ =gradp for somep € H'(Q)}.

Proof Characterization of HL. “C”: If @ is perpendicular to H, is perpendicular to V and thus by De
Rham’s theorem, % = grad p for some distribution p. Since @ € L?(2), Theorem 6 tells us p € L*(Q) as
well and so p € H'(Q).

“27: (gradp, ¥)L2(qyn = —(p, div ¥)12(q) = 0 for all ¥ € V and thus for all 7€ V.

Characterization of H. “C”: If 4 € H, there exists a sequence i, converging to @ in L? (Q). divd, =0
for all n. Since distributional differentiation is continuous on L?*(Q), div @ = 0. This shows that i, not
only converges in L*(Q) but also in E(Q). Since v, is continuous on E(Q) and ~, i, = 0, v,@ = 0.

“D”: H is a closed subspace of L?(Q) and thus any subspace properly containing it must contain
an element of H-. Suppose there exists a @ € H' with divid = 0 and 7,4 = 0. @ = gradp for some
p € L*(Q) and

div (gradp) = Ap=0, ~vy.gradp =0.
Thus p is a solution to the Neumann problem with zero data and so must be constant. But @ = gradp
and thus 4 = 0. &



Theorem 8 H' can be split into the orthogonal spaces
H, ={id e L*(Q)" : @ = grad p for somep € H' () and Ap = 0},

and
Hy={d@ e L*(Q)" : @ = gradp for somep € Hy(Q)}.

Theorem 9 V = {i € H}(Q)" : divi = 0}.

Proof “C”: Follows from density of V and continuity of differentiation.

“2”: Let W be the closed subspace of H{} () defined by the right side of the theorem statement.
Suppose L is a functional defined on W which vanishes on V. Extend L to a functional on H ().
L vanishes on V and thus equals gradp for some p € L?(Q) by Theorems 5 and 6. But then L(¥) =
—(p,divt) =0forall e W andso V =W. O

We have assumed 2 is bounded. For general (2’s, the relationship between V and the divergence free
members of Hg(2)™ was an open question as of 1985.
The relationship between the various spaces may be summarized by the following diagram.

D(Q)" Hy ()" LA(Q)"
U U U
y ¢ Vv C H C E CE

4 Variational Formulation of Stokes’ Equation

4.1 Homogeneous Problem

The strong form of the homogeneous steady-state Stokes problem is to find a function # representing
velocity and a function p representing pressure such that

—vAG+gradp = f € L*(Q)" (1)
divii =0 € L*(Q) (2)
Yoii =0 € H'/*(I). (3)

Here v represents kinematic viscosity, a positive constant. Also, the Laplacian is applied component-wise.
The divergence and boundary conditions on 4 are equivalent to asking that @ be an element of V' C H.
Equation 1 says that f+ vAT is an element of HL. In this sense equation 1 and equations 2 and 3 are
complementary.
Multiplication by a divergence-free test function ¥ € V and integration by parts shows

(@, ) = (f,5) 20y (4)

for all # € V and thus for all 7 € V. Here ((-,-)) is the principle part of the H'(Q)" inner product.
Conversely, if @ € V satisfies equation 4 for all ¥ € V, then Theorems 5 and 6 show that

—vAU — f: —gradp

for some p € L*(Q).

It is clear from the Lax-Milgram theorem that 4 is well posed even if € is only bounded in one
direction, but our characterization of V' depends on €2 being bounded. p is as uniquely determined as it
could be: since only grad p appears in the equation, p could only possibly be unique up to a constant.



4.2 Non-Homogeneous Problem
Given f e L*(Q)", g € L*(Q), and @ € HY/?(I')", we can solve

—vAG +gradp = f € L*(Q)"
divii = g € L*(Q)
Yoii = ¢ € H/(I)" (7)

/gdx:/¢'~uds. (8)
Q r

Proof Pick tp € H&(Q)” with vt = @. From the compatibility condition 8 and Stokes’ formula,

/g—divﬁodaj:O.
Q

Thus by Corollary 1, there exits @ € Hg(Q)™ with divid; = g — divid. If we let @ = @ — @ — @1 then
the non-homogeneous Stokes problem for @ reduces to the homogeneous Stokes problem for ¢ with f
replaced by f — vA(uo — u1). &

—~
S Ot
=

provided that

5 Regularity

Theorem 10 Let Q C R™ be a bounded open with C™ 2 boundary for a positive integer m. Let 1 < q <
o0.Suppose that it € W9(Q)™ and p € WH(Q) are solutions to the Stokes problem with data

fewmi @),
gewmtha)", and
G e Wty
Then @ € W™T29(Q)™ and p € W™TH9(Q). Also, there exists a constant c(q,v,m, Q) such that
1@l + llpll < (1A + 1G] + 18] + dllEll acyn }
where d =0 for ¢ > 2 and d =1 otherwise.

The unsubscripted norms in the above inequality are taken to be the strongest norms which make
sense. In the case of p this means
HpHWm+1v‘I(Q)/]R

since p is only determined up to a constant.
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