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1 Introduction

It is natural to ask in the middle of a trial how likely it is that the trial will

reach one conclusion or another, or even to reach no conclusion at all. Predictive

probabilities provide a mechanism for answering that question.

Predictive probabilities are most easily understood in the context of binary

outcomes. This note focuses on binary outcomes, though the same principles

apply more broadly to other outcomes, such as time-to-event.

2 Preliminaries for beta random variables

Let

B(a, b) =

∫1
0

θa−1(1− θ)b−1 dθ =
Γ(a)Γ(b)

Γ(a+ b)

denote the beta function. A beta(a, b) random variable is one with probability

density function
1

B(a, b)
θa−1(1− θ)b−1.

Let Y be a binomial random variable with probability of success θ where

θ has a beta(a, b) prior. The prior predictive probability of s successes and f

failures in Y is ∫1
0

(
s+ f

s

)
θs(1− θ)f

1

B(a, b)
θa−1(1− θ)b−1 dθ

which simpli�es to (
s+ f

s

)
B(s+ a, f+ b)

B(a, b)
.

Note that the predictive probability of one success is E[θ]. However, the

predictive probability of two successes is not simply E[θ]2.
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Suppose now that we have observed s0 successes on Y and f0 failures and

want to �nd the posterior predictive probability of s more successes and f more

failures on Y. This is the same as the prior predictive probability of s successes

and f failures with the prior on Y updated to beta(s0+a, f0+b), which amounts

to (
s+ f

s

)
B(s+ s0 + a, f+ f0 + b)

B(s0 + a, f0 + b)
.

2.1 Examples

Suppose you just started watching a high school basketball game. You've no-

ticed that one of the players, Jones, has made two out of his last �ve free

throws. You want to estimate the probability of Jones making his next free

throw. Not having anything else to go on, you use your recent observations to

form a beta(2, 3) prior on the probability of Jones making a free throw. You

calculate the predictive probability of Jones making his next free throw at 2/5,

exactly his average so far, and start to wonder about the bene�t is of all this

predictive probability machinery.

But next you decide to look a little further into the future and wonder

about the outcomes of Jones's next two free throws. Now things get a little

more interesting. Again using a beta(2, 3) prior, you �nd that the predictive

probability of Jones making his next two free throws is(
2+ 0

2

)
B(2+ 2, 3+ 0)

B(2, 3)
=
1

5
.

The predictive probability for one out of two free throws is(
1+ 1

1

)
B(2+ 1, 3+ 1)

B(2, 3)
=
2

5

and the predictive probability for his missing two free throws is(
0+ 2

2

)
B(2+ 0, 3+ 2)

B(2, 3)
=
2

5
.

Note that these are not quite what you would have gotten if you had simply

assumed that Jones makes 2 out of 5 free throws. For in that case, you'd

estimate his probabilities of missing 0, 1, or 2 of his next free throws as (2
5
)2,

2(2
5
)(3
5
), and (3

5
)2 respectively. These frequentist estimates work out to 0.16,

0.48, and 0.36, whereas the corresponding predictive probabilities are 0.2, 0.4,

and 0.4. What accounts for the di�erence? The Bayesian approach takes into

account the uncertainty in the estimate of Jones's free throw ability. After

all, you'd only observed �ve free throw attempts when you started to wonder

about probabilities. If you had observed that Jones made 20 out of his last

50 attempts and chosen a beta(20, 30) prior, the predictive probabilities would

have been (0.164706, 0.470588, 0.364706), closer to the empirical estimates.
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3 Application to interim analysis

Let θA and θB be the probabilities of response on arms A and B. Given the

data collected so far, we want to calculate the probability that at the end of

the trial we will conclude θA > θB or θB > θA. (In general these probabilities

will not add up to 1 because it is possible we will not have enough evidence to

reject the null hypothesis θA = θB.)

There are two commonly used ways determine whether θA > θB or vice

versa, one frequentist and one Bayesian. The idea behind both calculations is

simple: we look at all possible outcomes, and add up the probabilities of the

outcomes that can lead to each conclusion.

3.1 Frequentist approach

The term \frequentist" may seem a bit odd, because we're doing Bayesian

statistics here. What we're calling the frequentist approach is calculating the

Bayesian predictive probability of a frequentist test result.

Let XA be the number of successes observed to date on arm A, YA a hypo-

thetical number of future successes, and NA the total number of patients who

will be treated on arm A. Denote the analogous quantities for arm B similarly.

De�ne

θ̂A =
XA + YA
NA

,

θ̂B =
XB + YB
NB

,

and

θ̂ =
XA + YA + XB + YB

NA +NB
.

The usual frequentist two-sample statistic for the equality of θA and θB is

Z =
θ̂A − θ̂B√

θ̂(1− θ̂)
(
1
NA

+ 1
NB

) .
This test concludes θA > θB if Z > z1−α∗/2 and concludes θB > θA if

Z < zα∗/2 where α
∗ is the signi�cance level of the test.

The predictive probability of concluding, for example, θA > θB is simply

the sum of the predictive probabilities of all (YA, YB) outcomes for which the

test would make this conclusion.

3.2 Bayesian approach

The usual Bayesian approach would be to conclude treatment A is superior if

the posterior probability

P(θA > θB |data)
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is larger than some cuto� c. The predictive probability of concluding treatment

A is superior is the sum of the predictive probabilities of all (YA, YB) outcomes

for which

P(θA > θB |data) > c.

3.3 Example

Suppose 50 patients have been treated so far, 25 on arm A and 25 on arm B,

in a trial that was design to run to 100 patients. There have been 10 successes

on arm A and 16 on arm B. How likely is it that if this trial were run to

completion, the trial would reject the null hypothesis that the response rates

on the two arms, θA and θB, are equal at a 5% signi�cance level? How likely

is the trial to decide in favor of A? In favor of B? Use the frequentist method

with a beta(0.6, 0.4) prior for the probability of response on each arm.

In the future, we will treat 25 more patients on each arm. We examine all

possible pairs (sA, sB) of success counts on arms A and B with sA ≥ 0 and

sB ≥ 0. We determine which of these pairs lead to the conclusion that θA > θB
at the 2.5% signi�cance level, and add up their predictive probabilities. We �nd

that the set of such pairs is the set (sA, sB) such that sA−sB ≥ 16. (In general,

the description of the points for which the test passes will not be this simple, but

here is it especially tidy.) This set of outcomes has total predictive probability

of about 3 × 10−6. The data collected so far imply that it is very unlikely

the trial will select A as the superior treatment. If A were an investigational

treatment and B were a placebo, the trial should stop at this point.

Next we �nd the probability of the trial concluding arm B is superior. Again

we determine which (sA, sB) pairs lead to this conclusion. The description of

this set of points is a little messier than the corresponding set above. If there are

no more responses on A and at least 3 more on B, the trial will conclude in favor

of A. Or if there is only one more response on A and at least 5 more on B. We

continue, for each number of successes on A, determining the minimum number

of successes on B. If there are 23 or more future successes on A, there cannot

be enough responses on B to make the trial conclude B is superior. When we

add up the predictive probabilities of each of these pairs, we get 0.6886.

Note that the probability of declaring A the winner is essentially zero, and

the probability of declaring B the winner is 0.6886. These numbers do not sum

to 1, because the predictive probability of not rejecting the null is 0.3114.

To illustrate the predictive probability calculations, we show how one of

the terms in the sum leading to declaring B superior wold be calculated. We

example the possibility of 11 future successes on A and 18 future successes on

B. In this case we �nd z = −2.613, less than the cuto� of -1.96 for the 2.5%
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signi�cance level. The predictive probability of 11 successes on A is(
11+ 14

11

)
B(10+ 11+ 0.6, 15+ 14+ 0.4)

B(10+ 0.6, 15+ 0.4)

and the predictive probability of 18 successes on B is(
18+ 7

18

)
B(16+ 18+ 0.6, 9+ 7+ 0.4)

B(16+ 0.6, 9+ 0.4)

and so their product, 0.01154, is the predictive probability of the pair.

4 Resources

J. Kyle Wathen has written software to calculate the predictive probabilities

discussed in this note. His software also supports time-to-event outcomes. This

software is available on the MD Anderson Biostatistics software download site:

https://biostatistics.mdanderson.org/SoftwareDownload

For more information on posterior predictive probability, see Bayesian Data

Analysis by Gelman, Carlin, Stern, and Rubin.
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