College courses often begin by trying to weaken your confidence in common sense. For example, a psychology course might start by presenting optical illusions to show that there are limits to your ability to perceive the world accurately. I’ve seen at least one physics textbook that also starts with optical illusions to emphasize the need for measurement. Optical illusions, however, take considerable skill to create. The fact that they are so contrived illustrates that your perception of the world is actually pretty good in ordinary circumstances.

For several years I’ve thought about the interplay of statistics and common sense. Probability is more abstract than physical properties like length or color, and so common sense is more often misguided in the context of probability than in visual perception. In probability and statistics, the analogs of optical illusions are usually called paradoxes: St. Petersburg paradox, Simpson’s paradox, Lindley’s paradox, etc. These paradoxes show that common sense can be seriously wrong, without having to consider contrived examples. Instances of Simpson’s paradox, for example, pop up regularly in application.

Some physicists say that you should always have an order-of-magnitude idea of what a result will be before you calculate it. This implies a belief that such estimates are usually possible, and that they provide a sanity check for calculations. And that’s true in physics, at least in mechanics. In probability, however, it is quite common for even an expert’s intuition to be way off. Calculations are more likely to find errors in common sense than the other way around.

Nevertheless, common sense is vitally important in statistics. Attempts to minimize the need for common sense can lead to nonsense. You need common sense to formulate a statistical model and to interpret inferences from that model. Statistics is a layer of exact calculation sandwiched between necessarily subjective formulation and interpretation. Even though common sense can go badly wrong with probability, it can also do quite well in some contexts. Common sense is necessary to map probability theory to applications and to evaluate how well that map works.