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A Case for Robust Bayesian priors with
Applications to Binary Clinical Trials

Jairo A. Fuquene P., John D. Cook, and Luis Raul Pericchi

Abstract

Bayesian analysis is frequently confused with conjugate Bayesian analysis. This
is particularly the case in the analysis of clinical trial data. Even though conju-
gate analysis is perceived to be simpler computationally (but see below, Berger’s
prior), the price to be paid is high: such analysis is not robust with respect to the
prior, i.e. changing the prior may affect the conclusions without bound. Further-
more conjugate Bayesian analysis is blind with respect to the potential conflict
between the prior and the data. On the other hand, robust priors have bounded
influence. The prior is discounted automatically when there are conflicts between
prior information and data. In other words, conjugate priors may lead to a dog-
matic analysis while robust priors promote self-criticism since prior and sample
information are not on equal footing. The original proposal of robust priors was
made by de-Finetti in the 1960’s. However, the practice has not taken hold in im-
portant areas where the Bayesian approach is making definite advances such as in
clinical trials where conjugate priors are ubiquitous.

We show here how the Bayesian analysis for simple binary binomial data, af-
ter expressing in its exponentially family form, is improved by employing Cauchy
priors. This requires no undue computational cost, given the advances in compu-
tation and analytical approximations. Moreover, we also introduce in the analysis
of clinical trials a robust prior originally developed by J.O. Berger, that we call
Berger’s prior. We implement specific choices of prior hyperparmeters that give
closed-form results when coupled with a normal log-odds likelihood. Berger’s
prior yields the supe- rior robust analysis with no added computational compli-
cation compared to the conjugate analysis. We illustrate the results with famous
textbook examples and a with data set and a prior from a previous trial. On the for-
mal side, we give here a general and novel theorem, that we call the “Polynomial



Tails Comparison Theorem.” This theorem establishes the analytical behavior of
any likelihood function with tails bounded by apolynomial when used with pri-
ors with polynomial tails, such as Cauchy or Student’s t. The advantages of the
theorem are that the likelihood does not have to be a location family nor exponen-
tial family distribution and that the conditions are easily verifiable. The binomial
likelihood can be handled as a direct corollary of the result. For Berger’s prior
robustness can be established directly since the exact expressions for posterior
moments are known.
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the conclusions without bound. Furthermore conjugate Bayesian analysis
is blind with respect to the potential conflict between the prior and the
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robust priors was made by de-Finetti in the 1960’s. However, the practice
has not taken hold in important areas where the Bayesian approach is
making definite advances such as in clinical trials where conjugate priors
are ubiquitous.

We show here how the Bayesian analysis for simple binary binomial
data, after expressing in its exponentially family form, is improved by em-
ploying Cauchy priors. This requires no undue computational cost, given
the advances in computation and analytical approximations. Moreover,
we also introduce in the analysis of clinical trials a robust prior originally
developed by J.O. Berger, that we call Berger’s prior. We implement spe-
cific choices of prior hyperparmeters that give closed-form results when
coupled with a normal log-odds likelihood. Berger’s prior yields the supe-
rior robust analysis with no added computational complication compared
to the conjugate analysis. We illustrate the results with famous textbook
examples and a with data set and a prior from a previous trial. On the
formal side, we give here a general and novel theorem, that we call the
“Polynomial Tails Comparison Theorem.” This theorem establishes the
analytical behavior of any likelihood function with tails bounded by a
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polynomial when used with priors with polynomial tails, such as Cauchy
or Student’s t. The advantages of the theorem are that the likelihood does
not have to be a location family nor exponential family distribution and
that the conditions are easily verifiable. The binomial likelihood can be
handled as a direct corollary of the result. For Berger’s prior robustness
can be established directly since the exact expressions for posterior mo-
ments are known.
Keywords: Berger’s Prior, Clinical Trials, Exponential Family, Para-

metric Robust Priors, Polynomial Tails Comparison Theorem, Robust Pri-

ors.

1 Introduction

In Bayesian statistics the selection of the prior distribution is crucial to the
analysis of data because the conclusions depend on this selection. However,
there is little analysis of clinical trials using non-conjugate priors. A common
solution is to report the analysis using different priors: clinical, skeptical, and
non-informative. The precision in these priors is important and sensitivity anal-
ysis regarding the priors is necessary. One approach to this problem is advo-
cated by Greenhouse & Wasserman (1995), who compute bounds on posterior
expectations over an ε-contaminated class of prior distributions. An alternative
solution proposed in Carlin & Louis (1996), where one re-specifies the prior and
re-computes the result. These authors obtain fairly specific results for some re-
stricted non-parametric priors classes. Along the same line, another alternative
is the “prior partitioning” of Carlin & Sargent (1996), who select a suitably
flexible class of priors (a non-parametric class whose members include a quasi-
unimodal, a semi-parametric normal mixture class, and the fully parametric
normal family) and identify the priors that lead to posterior conclusions of in-
terest. These (very few) proposals, are on what can be called “non-parametric”
robustness to the prior. The proposals in this paper are “parametric” robust
Bayesian analysis, quite distinct from the previous proposals. Some general re-
sults on parametric Bayesian robustness are in Dawid (1973), O’Hagan (1979),
Pericchi & Sansó (1995). We believe that the main road forward for clinical
trials is on the parametric side for three reasons. First, it is more natural to
represent the information given by a previous trial in terms of parametric ro-
bustness. More generally parametric priors are easier to assess. Second, it is
far more clear how to generalize a parametric robust analysis to hierarchical
modeling than a non-parametrical class of priors. Finally, non-parametric pri-
ors do not appear to have achieved a significant impact in practice, so “give a
parametric robustness a chance!”

The popular Normal/Normal (N/N) or Beta/Binomial (B/B) conjugate
analysis (see for example Spiegelhalter, Abrams & Myles (2004)) will be exposed
in this article as non-robust. Workable (parametric) alternatives are available
to the practitioner. For motivation consider: The posterior mean µn in the N/N
and B/B models is (see next section) µn = (n0 + n)−1(n0µ + nX̄n). Thus the
mean is a convex combination of the prior expectation, µ, and the data average,
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X̄n, and thus the prior has unbounded influence. For example, as the location
prior/data conflict |µ − x̄| grows, so does |µn − x̄| and without bound. These
considerations motivate the interest in non-conjugate models for Bayesian ana-
lysis of clinical trials, and more generally motivate heavy tailed priors. (See the
theorem in the next section.)

However, to avoid confusion we may employ the following metaphor: Bayesian
clinical trials are not better because they stop sampling earlier (although they
often do) but because they stop intelligently. Robust priors are not better be-
cause they influence less the inference (although they often do) but because
they influence in a more intelligent way: the influence of the robust prior is a
function of the potential conflict between prior and sample information about
the region where the the parameters are most likely to live. In this paper we
show that the Cauchy prior is robust in two posterior models for clinical trials.
Pericchi & Smith (1992) considered the robustness of the Student-t prior in the
Student-t/Normal model. We consider as a particular case the Cauchy/Normal
(C/N) model for Normal log odds. Much less known however, is the robust
property of the Cauchy prior with the Binomial likelihood and more generally
for exponential family likelihoods. To prove the robustness of the Cauchy prior
when coupled with a Binomial likelihood, we prove a more general result that
only requires a bound in the tail behavior of the likelihood. This novel the-
orem is easy to verify and is very general. Under these conditions, when the
prior and the model are in conflict, then the prior acts “as if” it were uniform.
In other words, the prior influences the analysis only when prior information
and likelihood are in broad agreement. Otherwise Bayes’ theorem effectively
switches back to a uniform prior. In this paper we use strongly the fact that
the Binomial likelihood belongs to the exponential family (though the theorem
is not limited to exponential family likelihoods) showing the robustness of the
Cauchy prior in the Cauchy/Binomial (C/B) model for binary data. Cauchy
priors do not lead to analytical closed form results, but our next suggestion does.
In his very influential book Berger (1985), Berger proposes a prior (called here
“Berger’s Prior”). We use Berger’s prior for clinical trials analysis, assuming a
prior mean and scale suggested by previous data or by general features of the
current trial. It turns out that this gives closed form results when coupled with
a Normal log-odds likelihood. We show the robustness of Berger’s prior for the
Berger-Prior/Normal log-odds (BP/N) model, which makes it more attractive
than both the Cauchy and conjugate priors. Lastly we remark that the hierar-
chical model is not the solution for the lack of robustness of conjugate analysis.
Quite to the contrary, the hierarchical model should be use robust priors in
the hierarchy to prevent unbounded and undesirable shrinkages. This is being
studied in work in progress by J.D. Cook, M.E. Perez, and L.R. Pericchi.

This article is organized as follows. Section 2 is devoted to present the
Polynomial Tails Comparison Theorem. In section 3 we review the prior speci-
fication and posterior moments of the C/B model. In the section 4 we examine
the robustness of the Cauchy prior in the C/B posterior model. In the sections
3 and 4 we show the application of the C/B model in a clinical trial. In section
5 we describe the robustness of the C/N and BP/N model in simulated and real
clinical trials. We make some closing remarks in section 6.
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2 The Polynomial Tails Comparison Theorem

In order to decide if a prior is robust with respect to a likelihood, the following
theorem is decidedly useful and easy to apply.

For ν > 0, define

t(λ;µ, ν) =

(

1 +
(λ− µ)2

ν

)−(ν+1)/2

.

Aside from a normalization constant that would cancel out in our calculations,
t(λ;µ, ν) is the PDF of a Student-t distribution with ν degrees of freedom cen-
tered at µ.

Let f(λ) be any likelihood function such that as |λ| → ∞
∫

|λ|>m

f(λ) dλ = O(m−ν−1−ε). (2.1)

In the application we have in mind, f is a Binomial likelihood function with at
least one observed success and one observed failure, though of course the result
is more general. For instance the latter holds for any ν in any likelihood with
exponentially decreasing tails.

Denote by πT (λ|data) and πU (λ|data) the posterior densities employing the
Student-t and the Uniform prior densities respectively. Applying Bayes rule to
both densities, yield for any parameter value λ0 the following ratio:

πT (λ0|data)
πU (λ0|data)

=

∫∞

−∞
f(λ) t(λ;µ, ν) dλ

t(λ0;µ, ν)
∫∞

−∞
f(λ) dλ

.

Theorem 2.1. For fixed λ0,

lim
µ→∞

∫∞

−∞
f(λ) t(λ;µ, ν) dλ

t(λ0;µ, ν)
∫∞

−∞
f(λ) dλ

= 1. (2.2)

Proof. We will show that

lim
µ→∞

∫∞

−∞
f(λ) t(λ;µ, ν) dλ− t(λ0;µ, ν)

∫∞

−∞
f(λ) dλ

t(λ0;µ, ν)
∫∞

−∞
f(λ) dλ

= 0. (2.3)

Note that the numerator can be written as
∫ ∞

−∞

f(λ) (t(λ;µ, ν)− t(λ0;µ, ν)) dλ.

We break the region of integration in the numerator into two parts, |λ| < µk

and |λ| > µk, for some 0 < k < 1 that we will pick later, and show that as
µ→∞ each integral goes to zero faster than the denominator.

First consider
∫

|λ|<µk

f(λ) (t(λ;µ, ν)− t(λ0;µ, ν)) dλ. (2.4)

http://biostats.bepress.com/mdandersonbiostat/paper44
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For every λ, there exists a ξ between λ and λ0 such that

t(λ;µ, ν)− t(λ0;µ, ν) = t′(ξ;µ, ν)(λ− λ0)

by the mean value theorem. Since µ→∞, we can assume µ > µk > λ0.

|t(λ;µ, ν)− t(λ0;µ, ν)| = |t′(ξ;µ, ν)(λ− λ0)|

=
(ν + 1)|λ− µ| |λ− λ0|

ν
(

1 + (λ−µ)2

ν

)(ν+3)/2

=
O(µ1+k)

Ω(µν+3)

= O(µk−ν−2).

[Here we use the familiar O notation and the less familiar Ω notation. Just
as f = O(µn) means that f is eventually bounded above by a constant multiple
of µn, the notation f = Ω(µn) means that f is eventually bounded below by a
constant multiple of µn.]

As µ→∞, the integral (2.4) goes to zero as O(µk−ν−2). Since t(λ0;µ, ν) is
Ω(µ−ν−1), the ratio of the integral (2.4) to t(λ0;µ, ν) is O(µk−1). Since k < 1,
this ratio goes to zero as µ→∞.

Next consider the remaining integral,
∫

|λ|>µk

f(λ) (t(λ;µ, ν)− t(λ0;µ, ν)) dλ. (2.5)

The term t(λ;µ, ν)− t(λ0;µ, ν) is bounded, and we assumed
∫

|x|>m

f(λ) dλ = O(m−ν−1−ε).

Therefore the integral (2.5) isO((µk)−ν−1−ε) = O(µ−k(ν+1+ε)). Since t(λ0;µ, ν)
is Ω(µ−ν−1), the ratio of the integral (2.5) to t(λ0;µ, ν) is of order
O(µ−k(ν+1+ε/(ν+1)). This term goes to zero as µ → ∞ provided
k > (ν + 1)/(ν + 1 + ε).

Note that in particular the theorem applies when f is the likelihood function
of a Binomial model with at least one success and one failure and ν = 1, i.e. a
Cauchy prior.

3 The Binomial Likelihood with Conjugate and
Cauchy Priors

Let a sample of size n, X1, . . . , Xn ∼ Bernoulli(θ). The binomial likelihood in
its explicit exponential family form is given by

f(X+|λ) ∝ exp
{

X+λ− n log(1 + eλ)
}

, (3.1)

Hosted by The Berkeley Electronic Press
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where X+ =
∑n

i=1 Xi ∼ Binomial(n, θ) is the number of success in n trials.
Notice that for the Binomial likelihood, it is enough to assume that there is at
least one success and one failure, i.e. 0 < X+ < n, (for assumption (2.1) of
the theorem of the previous section to be fulfilled for every ν ≥ 1), since then
the Binomial has exponentially decreasing tails. The natural parameter is the
log-odds, λ = log(θ/(1− θ)), which is the parameter to be modeled as a Cauchy
variable later, for which can make use of the theorem.

First we perform a conjugate analysis, and express the Beta(a, b) prior, after
of the transformation of the parameter θ to log-odds, as

πB(λ) =
Γ(a+ b)

Γ(a)Γ(b)

(

eλ

1 + eλ

)a(
1

1 + eλ

)b

a, b > 0. (3.2)

The cumulant-generating function of the prior distribution πB(λ) is given
by

Kλ(t) = − log(Γ(a)Γ(b)) + log(Γ(a+ t)) + log(Γ(b− t)), (3.3)

hence

EB(λ) = Ψ(a)−Ψ(b); VB(λ) = Ψ
′

(a) + Ψ
′

(b), (3.4)

where Ψ(·) is Digamma function and Ψ
′

(·) is Trigamma function, that are ex-
tensively tabulated in for example Abramowitz & Stegun (1970). The posterior
distribution of the B/B model is given by

πB(λ | X+) = K × exp
{

(a+X+)λ− (n+ a+ b) log(1 + eλ)
}

(3.5)

where K =
Γ(n+ a+ b)

Γ(X+ + a)Γ(n−X+ + b)
.

On the other hand, one proposal for robust analysis for Binomial data (see
also next sections for Berger’s prior for another alternative), is to use a Cauchy
prior for the natural parameter λ in order to achieve robustness with respect to
the prior,

πC(λ) =
β

π[β2 + (λ− α)2]
, (3.6)

with parameters of localization and scale α and β respectively. The posterior
distribution of the C/B model is

πC(λ | X+) =
exp

{

X+λ− n log(1 + eλ)− log
(

β2 + (λ− α)2
)}

m(X+)
,

where m(X+) is the predictive marginal. Notice that this posterior also
belongs the exponential family. One approach to the approximation of m(X+)

http://biostats.bepress.com/mdandersonbiostat/paper44
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is the Laplace’s method, refined by Tierney & Kadane (1986) for

statistical applications given by m(X+) ≈
√
2πσ̂n−1/2 exp{−nh(λ̂)}

where −nh(λ) = log(πC(λ)f(X+|λ)), λ̂ is the maximum of −h(λ̂), and
σ̂ = [h

′′

(λ)]−1/2|λ=λ̂. They show accuracy of order O(n−1).

Example 3.1. A Textbook Clinical Trial Example. We apply the prece-
ding approximation adapting an example considered in Spiegelhalter et al.
(2004). Suppose that previous experience with similar compounds has
suggested that a drug has a true response rate θ, between 0 and 0.4, with
an expectation around 0.2. For Normal distributions we know that m ± 2s
includes just over 95% of the probability, so if we were assuming a Normal
prior we might estimate m = 0.2 and s = 0.1. However, the Beta distributions
with reasonably high a and b have approximately Normal shape, so that
θ ∼ Beta(a = 3, b = 12). Suppose that we test the drug on 20 additional
patients and observe 16 positive responses (X+ = 16). Then the likelihood
of the experiment is X+ ∼ Binomial(n = 20, θ = 0.8) and the posterior
in this case θ | X+ ∼ Beta(a = 19, b = 16). Our proposal is to use a
Cauchy prior in order to achieve robustness with respect to the prior, πC(λ),
with the same parameters of localization and scale whit in the Beta prior.
For this example the localization and the scale are Ψ(3) − Ψ(12) = −1.52
and

√

Ψ′(3) + Ψ′(12) = 0.69 respectively. Figures 1 and 2 display a large
dis-crepancy between the means of the prior information and the normalized
likelihood of the data. In the B/B model the prior and the likelihood receive
equal weight. The weight of the likelihood in the C/B posterior model is higher
that in the B/B model. The form of the C/B model is much more closer to the
data.
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Figure 1: Beta prior, binomial likelihood and B/B posterior model for the
Example 1.
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Figure 2: Cauchy prior, binomial likelihood and C/B posterior model for the
Example 1.

♦

The posterior moments of the natural parameter of an exponential family are
consider in Pericchi, Sansó & Smith (1993) and Gutierrez-Peña (1997). The
cumulant-generating function of the posterior, πB(λ | X+), in the B/B model is

Kλ|X+
(t) = log

(

Γ(X+ + a+ t)Γ(n−X+ + b− t)

Γ(X+ + a)Γ(n−X+ + b)

)

, (3.7)

hence

EB(λ|X+) = Ψ(X+ + a)−Ψ(n−X+ + b) (3.8)

VB(λ|X+) = Ψ
′

(X+ + a) + Ψ
′

(n−X+ + b). (3.9)

In the C/B model, we need to calculate the approximation of EC(λ|X+) and
VC(λ|X+). The posterior expectation EC(λ|X+) involves the ratio of two inte-
grals and the Laplace method can be used, as

Ẽ(λ|X+) =

(

σ∗

σ̂

)

exp
{

−n[h∗(λ∗)− h(λ̂)]
}

, (3.10)

where −nh∗(λ) = log(λπC(λ)f(X+|λ)), λ∗ is the maximum of −h∗(λ) and
σ∗ = [h∗

′′

(λ)]−1/2|λ=λ∗ . The error in (3.10) is of order O(n−2) (see Tierney &
Kadane (1986)). However, in (3.10) we must assume that λ does not change
sign. Tierney, Kass & Kadane (1989) recommend to add a large constant c
to λ, apply Laplace’s method (3.10) and finally subtract the constant. We
let ẼC(λ|X+) and ṼC(λ|X+) to denote approximate posterior expectation and
posterior variance of the C/B model

http://biostats.bepress.com/mdandersonbiostat/paper44
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ẼC(λ|X+) = Ẽ(c+ λ|X+)− c. (3.11)

ṼC(λ|X+) = Ẽ((c+ λ)2|X+)− [Ẽ(c+ λ|X+)]
2. (3.12)

For both functions h(λ̂) and h∗(λ) it is not possible to find the maximum ana-
lytically and then we use Newton Raphson algorithm. Where c is the value
of λ such that πC(λ = c | X+) ≤ 0.5−4 and the starting value in the Newton-
Raphson algorithm is the Maximum Likelihood Estimator (MLE) of the natural

parameter, λ̂ = log((X̄n)/(1 − X̄n)). The following result establishes that the
influence of µ is bounded for the Cauchy prior, but unbounded for the conjugate
prior.

Result 3.1. The posterior expectation for the C/B model and B/B satisfy the
following:

1. Robust result: The posterior expectation for the C/B model satisfy the
following:

lim
α→±∞

EC(λ|X+) ≈ λ̂+
e2λ̂ − 1

2neλ̂
. (3.13)

2. Non-robust result:

lim
EB(λ)→±∞

EB(λ|X+)→ ±∞. (3.14)

respectively.

Proof. See the Appendix. Result 3.1 is a corollary of the theorem 2.1.

Note: the limit (3.13) is surprising in that it is not equal to the MLE.

4 Computations with Cauchy Priors

We use weighted rejection sampling to compute the (“exact”) posterior moments
in the C/B model due to its simplicity and generality for simulating draws
directly from the target density πC(λ | X+) (see Smith & Gelfand (1992)). In
the C/B model the envelope function is the Cauchy prior. The rejection method
proceeds as follows:

1. Calculate M = f(X+|λ̂).
2. Generate λj ∼ πC(λ).

3. Generate Uj ∼ Uniform(0,1).

4. If MUj πC(λj) < f(X+|λj)πC(λj), accept λj ; otherwise, reject λj . Go to
step 2.

Hosted by The Berkeley Electronic Press
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It is clear that the Cauchy density is an envelope, and it is simple to generate
Cauchy distributed samples, so the method is well defined and feasible. Using
Monte Carlo methods and 10,000 random samples from πC(λ | X+) we compute
Esim and Vsim.
Results available from the authors show that the agreement between the Laplace
approximations and the rejection algorithm is quite good for sample sizes bigger
than n = 10. In Figures 3 to 5 we illustrate the striking qualitative difference of
posterior moments, as a function of the discrepancy between prior and sample
location |µ− x̄|.
Figure 3 shows that the Beta prior has an unbounded influence and it is not
robust. Figures 4 and 5 display the qualitative forms of dependence of the
posterior expectation and variance on the discrepancy between the prior location
and the MLE using a Cauchy prior. Here λ̂ = 0 and a and b take various values
with their sum fixed at 50. In addition, the approximations (3.11) and (3.12)
are shown as functions of the discrepancy. Note that (3.12) is non-monotonic
in the discrepancy. The posterior expectation, ẼC(λ|X+), is a function of the
“information discount.”

−4 −3 −2 −1 0 1 2 3 4 5

−1.0

0.0

1.0

2.0

E(λ)− λ̂

E
B
(
λ
|X

+
)

Figure 3: Behavior of the posterior expectation, EB(λ|X+), in the B/B model

for values n = 10, λ̂ = 0 and a+ b = 50.
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Figure 4: Behavior of the posterior expectation, ẼC(λ|X+), in the C/B model

for values n = 50, λ̂ = 0 and a+ b = 50.
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Figure 5: Behavior of the posterior variance, VB(λ|X+) in the B/B and

ṼC(λ|X+) in the C/B for values n = 50, λ̂ = 0 and a+ b = 50.
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Example 4.1. Textbook Example (Continued): Moments and predic-
tions for binary data.

Table 1: Posterior Expectation and Variance for the B/B and C/B models.

EB(λ|X+) VB(λ|X+) ẼC(λ|X+) ṼC(λ|X+) M.L.E

0.18 0.12 1.26 0.33 1.39

In Table 1 there is a big difference between the values of the posterior mean
(0.18) for the B/B model and the MLE. On the other hand, the results of

the C/B model with respect to λ̂ are similar. The discrepancies between the
expectations of the posterior models and the MLE are approximately 3.5 and
0.23 standard errors for B/B and C/B respectively. For the scale of θ that is
the true response rate for a set Bernoulli trials, we know that the predictive
mean of the total number of successes in m trials is E(Xm) = mE(θ|X+). If
we plan to treat 40 additional patients in the B/B model the predictive mean
is 40× 0.54 ≈ 22, and in the C/B model is equal to 40× 0.77 ≈ 31. The result
of the C/B model is more closely related with to sampling data (because the
maximum likelihood estimator of θ is 0.8 that is closer to 0.77) in contrast to the
B/B model. The Beta prior is more “dogmatic” than the Cauchy prior leading
to non robust results. Bayes is not dogmatic in general, but conjugate Bayes is!
This is a big selling point of robust Bayesian methods.

♦

5 Normal Log-Odds and Berger’s Prior

An alternative to the Binomial Likelihood is the Normal Likelihood in the Log-
Odds, see Spiegelhalter et al. (2004). Pericchi & Smith (1992) showed some
aspects of the robustness of the Student-t prior for a Normal location parameter
and provided approximations to the posterior moments in the model Student-
t/Normal. The Cauchy prior, as a Student-t with one degree of freedom, can
and will then be used in this context as well. However, for Normal log-odds
there is a robust prior that leads to a closed form posterior and moments, a sort
of the “best of the two worlds.” Bayesians have long come to terms with the
disadvantages of procedures based on conjugate priors, because of the desire for
closed form results. However, Berger (1985) proposes for comparison of several
means a robust prior (called the “Berger’s Prior” in this work) that gives closed
form results coupled Normal means. Berger’s Prior (BP) has been important
in Bayesian robustness and is similar to a Cauchy prior, though thinner in the
tails. Our proposal is an analysis based on Berger’s Prior with mean distinct
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from zero for the BP/N posterior model. In this work we consider that the
location of Berger’s Prior, πµ

BP (λ), is µ. This prior has the following form.

πBP (λ) =

∫ 1

0

N(λ|µ; d+ b

2ν
− d) · 1

2
√
ν
dν (5.1)

Here N(λ|µ, τ2) denotes a Normal density on the parameter λ with mean
and variance µ, τ2 respectively, which is well-defined whenever b ≥ d. The
hyper-parameters d and b have to be assessed (see the end of the section for
assessments). We set b = σ2 and d = b/n (see Berger (2005)), which makes the
density well-defined for any sample size n. Furthermore we make the change of
variable η = λ− µ. Berger’s prior then becomes

πBP (η) =

∫ 1

0

K × exp

{

−n

2

[

2νη2

(n+ 1)σ2 − 2σ2ν

]}

dν (5.2)

where

K =

√
n

√

4π((n+ 1)σ2 − 2σ2ν)
. (5.3)

Result 5.1. Suppose that X1, . . . , Xn ∼ Normal(λ, σ2) where σ2 is assumed
known and λ is unknown. The predictive distribution of the BP/N model is

m(X̄n) =

√

σ2(n+ 1)√
4πn(X̄n − µ)2

[

1− exp

{

−n(X̄n − µ)2

(n+ 1)σ2

}]

.

The posterior distribution of the BP/N model is

πBP (λ|X̄n) =

πBP (λ) exp

{

−n(X̄n − λ)2

2σ2

}

√
n+ 1σ2

√
2n(X̄n − µ)2

[

1− exp

{

−n(X̄n − µ)2

(n+ 1)σ2

}] . (5.4)

The posterior expectation of the BP/N model

EBP (λ|X̄n) = X̄n +
2n(X̄n − µ)2 − 2σ2(n+ 1)(f(X̄n)− 1)

n(n+ 1)(X̄n − µ)(f(X̄n)− 1)
, (5.5)

and the posterior variance of the BP/N model

VBP (λ|X̄n) =
σ2

n
− σ4

n2

{

4n2(X̄n − µ)2f(X̄n)

σ4(n+ 1)2(f(X̄n)− 1)2

}

(5.6)

+
σ4

n2

{

2σ2(n+ 1)(f(X̄n)− 1)(σ2(n+ 1)(f(X̄n)− 1)− n)

σ4(n+ 1)2(f(X̄n)− 1)2(X̄n − µ)2

}

,

where f(X̄n) = exp

{

n(X̄n − µ)2

(n+ 1)σ2

}

.
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Proof. See Appendix.

The posterior expectation for the BP/N model satisfies the following

lim
µ→±∞

EBP (λ|X̄n) = X̄n; lim
µ→X̄n

EBP (λ|X̄n) = X̄n. (5.7)

This can be shown simply using L’Hopital’s rule on the expression of the pos-
terior expectation (5.5) and proves the robustness of the Berger prior coupled
with the Normal log odds (see also Berger (1985) pp. 236-240). Also we have
the following result for a Cauchy prior (as a corollary of the theorem):

lim
α→±∞

ECN (λ|X̄n) ≈ lim
α→±∞

X̄n −
2σ2(X̄n − α)

n(β2) + (X̄n − α)2
= X̄n. (5.8)

To illustrate the robustness with Cauchy and Berger Prior in the Figures 6 and
7 we compare the posterior expectation and variance respectively. The Figure
6 shows that the posterior expectations with a Cauchy prior and with Berger’s
prior are very similar. In both posterior models the posterior expectation has
a bounded influence. On other hand, the Figure 7 displays that the variances
have the same form, but the variance with the Cauchy prior is smaller when µ
tends to X̄n. Figures 6 and 7 display the qualitative forms of dependence of
the posterior mean and variance on the discrepancy between the prior location
parameter and the observed sample mean, for n = 10 and σ2 = 1. The posterior
expectation and variance are shown as functions of the discrepancy |µ − X̄n|.
Finally, if we consider a Normal prior for this analysis then the posterior variance
is constant in |µ− X̄n| equal to 0.09.
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Figure 6: Behavior of the posterior expectation: EBP (λ|X̄n) in the BP/N and
ECN (λ|X̄n) in the C/N. For values n = 10, X̄n = 0 and σ = 1.
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Figure 7: Behavior of the posterior variance: VBP (λ|X̄n) in the BP/N,
VCN (λ|X̄n) in the C/N and VNN (λ|X̄n) in the N/N model. For values n = 10,
X̄n = 0 and σ = 1.

5.1 Assessments of hyper-parameters

“Sceptical” and “Enthusiastic” priors. A useful suggestion under the sub-
jective Bayesian viewpoint, taken by Spiegelhalter, Freedman & Parmar (1994),
is to ask the the subject matter researchers, for reasonably optimistic and pes-
simistic priors (regarding the effectiveness of a new treatment). They do it for
conjugate priors, but there is no need to do so. The same reasonably adversarial
points of view can be taken with robust priors.
On the log-odds scale, an sceptical prior has mean zero (i.e. no difference bet-
ween treatments or λ = 0) and a substantial probability that the new treatment
is not better. The prior scale is assessed in reference to an optimistic hypothesis
λH . Then a small probability ξ, is assessed, for example ξ = 0.05 that the
effect of the treatment is equal or better than λH . For the Cauchy prior, the
sceptical parameters are very easy to assess. The location α is zero and the
scale β = λH/ tan(π(ξ − 1/2)). On the other hand for Berger’s prior, again the
location is zero and the scale is found from:

∫ 1

0

∫ λH

−∞

N(λ|µ; d+ b

2ν
− d) · 1

2
√
ν
dλ dν = ξ. (5.9)
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It is convenient to assume that d = b/n so that Berger’s prior is defined for all
n ≥ 1. It only remains to find b from

∫ 1

0

1

2
√
ν
Φ

(

λH
√
2νn

√

b(1 + n− 2ν)

)

dν = ξ. (5.10)

To solve b, it is convenient to graph the integral as a function of b, computing
the integral by the trapezoidal rule, or any other more accurate method, and
read off the graph the intersection with the chosen value of ξ.
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ξ

Figure 8: Assessments of the parameter b for n = 25 and λH = 1.

The Optimistic prior is assessed in an analogous way. For a more empirical
point of view, the assessments can be based on a previous related experiment
as it is in the next application.

Example 5.1. Application B/N model for Example 3.1. In this example
the Berger Prior has location equal to µ = log(0.2/(1 − 0.2)) = −1.38 and
we must approximate the Binomial likelihood by a Normal distribution. For
the likelihood (3.1), the Fisher information is In(λ) = (neλ/(1 + eλ)2). So
that in this example X̄n ∼ N(log(0.8/(1 − 0.8)), (1 + e1.38)2/20e1.38), that is,
X̄n ∼ N(1.38, 0.31). The posterior mean and variance of λ for the BP/N model
are EBP (λ|X̄n) = 1.27 and VBP (λ|X̄n) = 0.30 respectively. These results are
robust and very similar to the obtained with the Cauchy prior for the C/B
model.
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5.2 Application: BP/N and C/N model in a clinical trial

In this section we show application of the C/N and BP/N model in a clinical
trial.

Example 5.2. Bayesian analysis of a trial of the Rhesus Rotavirus-
Based Quadrivalent Vaccine.

Reference: Pérez-Schael, Guntiñas, Pérez, Pagone, Rojas, González, Cunto,
Hoshino & Kapikian (1997).

Study Design: Randomized, double blind, placebo-controlled trial.

Aim of Study: To compare rhesus rotaviruses-based quadrivalent vaccine
(a new drug that is highly effective in preventing severe diarrhea in developed
countries) and placebo.

Outcome measure: Over approximately 19 to 20 months, episodes of gas-
troenteritis were evaluated at the hospital among infants. The ratio of the odds
of response (episode of gastroenteritis) following the new treatment to the odds
of response on the conventional: OR < 1 therefore favors the new treatment.

Statistical Models: Approximate Normal likelihood and Normal prior for
the logarithm of the odds ratio. In the Cauchy prior and Berger’s prior the
values of the localization parameters are the same with respect to Normal prior.
The scale is the same in the Cauchy and Normal prior.

Prior Distribution: Was based in a published trial: Vesikari (1996), where
it is shown that in Finland the vaccine has high success rate in preventing severe
rotavirus diarrhea.

Loss function or demands: None specified.

Computation/software: Conjugate Normal analysis and the C/N poste-
rior model.

Evidence from study: The following data show the episodes of gastroen-
teritis in Venezuela.

Table 2: Episodes of gastroenteritis in the groups Vaccine and Placebo,
Venezuela.

Vaccine Placebo

Event Episode of gastroenteritis 70 135 205

Non-episode of gastroenteritis 1042 960 2002

1112 1095 2207
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Results: We show the Normal approximation for binary data for the log-
odds with the approximate standard error recommended in Spiegelhalter et al.
(2004) for 2 × 2 tables, following their suggestion of an standard error of the
likelihood Normal and N/N posterior model equal to σ = 2. The posterior mean
for the posterior model N/N is equal to (n0µ+ nX̄n)/(n0 + n) = −1.60.

Table 3: Exact and approximate moments of the N/N, C/N and BP/N models
in the scale of log-odds.

Location Scale

Prior Like Post Prior Like Post

N/N -1.97 -0.73 -1.60 0.31 0.15 0.08

C/N -1.97 -0.73 -0.76 0.31 0.15 0.15

BP/N -1.97 -0.73 -0.73 – 0.15 0.15

In the Table 3. we see that the standard errors of the C/N and BP/N model
with respect to the likelihood are equal. The influence of the equivalent number
of observations in the posterior distribution (n0 + n = 406 + 170 = 576) over
the standard error (σ/

√
n0 + n) is very high in the N/N model.

Table 4: Odds ratio and Credible Interval of the Posterior Model.

OR 95% Credible Interval (Scale OR))

N/N 0.20 [0.17; 0.23]

C/N 0.46 [0.35; 0.63]

BP/N 0.48 [0.36; 0.65]

Like 0.48 [0.36; 0.65]

The data of the current experiment (data in the Venezuela experiment)
dominated the C/N and BP/N models, resulting in a posterior expectation
much closer to the expectation of the likelihood. The expectations of the BP/N
model and the likelihood are equal. We can see in the Table 3 that N/N, C/N
and BP/N posterior models are in favor of the vaccine (OR<1). However, the
risk reduction in the N/N model is 80% and in the likelihood is around 52%
(equal in the BP/N model and similar to the observed in the C/N model 54%).
The credible interval of the C/N and BP/N posterior model is closely related
to the data in the trial.
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Finally, the discrepancies between the expectation of the posterior models and
expectation of the likelihood are approximately 11, 0.2, and 0 standard errors
for N/N, C/N and BP/N respectively. This case dramatically illustrates the
danger of assuming a conjugate prior as prior information in clinical trials.
Figures 9 and 10 shown the posterior distributions obtained in the conjugate
analysis and non-conjugate analysis. We see that the prior distribution receive
more weight in the N/N model. The posterior model C/N is very similar to
the likelihood Normal. For the Figure 10 the posterior distributions for the
C/N and BP/N model are the same. The results in the N/N model are sus-
pect because the mean posterior is far from the likelihood and the posterior
precision is unacceptably high given the conflict between the Finnish and the
Venezuelan data. Incidentally, the researchers concluded that the Finnish and
the Venezuelan responses were qualitatively different given the different levels
of exposure of the children to the virus. In conclusion the robust analyzes are
giving the sensible answer, and the conjugate analysis myopically insists that
Finland and Venezuela are quite similar in respect to children’s responses. On
the other hand, if the two cases were indeed similar, without a drastic conflict
on responses, then the robust analyzes would give answers quite similar to the
conjugate analysis, with conclusions with high precision. In other words, the
use of robust priors, makes Bayesian responses adaptive to potential conflicts
between current data and previous trials.
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Figure 9: Prior(Finland), likelihood(Venezuela) and posterior distributions in
the Bayesian analysis of a trial of the Rhesus Rotavirus-Based Quadrivalent
Vaccine for the N/N model.
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Figure 10: Prior(Finland), likelihood(Venezuela) and posterior distributions in
the Bayesian analysis of a trial of the Rhesus Rotavirus-Based Quadrivalent
Vaccine for the C/N model.

♦

6 Conclusions

The issues discussed in this paper have led us the following conclusions: 1).
The Cauchy prior in the Cauchy/Binomial model is robust but the Beta
prior in the conjugate Beta/Binomial model for the inference of the log-odds
is not. We can use the Cauchy/Binomial model in clinical trials making
a robust prediction in binary data. 2). Simulation of the moments in the
Cauchy/Binomial model reveals that the approximation performs well over a
range of n ≥ 10. However, we can use rejection sampling with either large or
small sample sizes. 3) Berger’s Prior is very useful in clinical trials for a robust
estimation since it gives closed form exact results (when the Normal Log-Odds
Likelihood is employed), and at the same time does not have the defects of
conjugate priors. It can be argued that besides computational convenience it
is superior to the Cauchy as a Robust prior, because the posterior variance
does not decrease as much as with the Cauchy. For the latter the posterior
variance can be much lower than using the conjugate prior when prior location
and the location of the Likelihood are close. Berger’s prior seems more
cautious. 4). In more complex situations, with several different centers that
are modeled with a hierarchical structure, the use of robust priors may be
even more important. This will be explored elsewhere. 5). The use of prior
information in terms of a robust (and non-conjugate) priors will be much more
acceptable to both researchers and regulatory agencies, because the prior can
not dominate the likelihood when the data conflict with the prior. Remember
the archetypal anti- “Bayesian” criticism: “With Bayes, you can get the
results you want, by changing your prior!”, should read instead: “With conju-
gate Bayes, you can get the results you want, by changing your conjugate prior!”

http://biostats.bepress.com/mdandersonbiostat/paper44



21

Appendix

A Proofs of Results 3.1

A.1 Cauchy Prior

Proof. Invoking the Polynomial Tails Comparison Theorem, we can use the
Uniform prior instead of the Cauchy prior when α→ + or - ∞ for the Binomial
likelihood, (assuming that 0 < X+ < n) so the generating function for the C/B
model is

lim
α→±∞

EC(e
tλ|X+) =

∫∞

−∞
exp

{

X+λ− n log(1 + eλ) + tλ
}

dλ
∫∞

−∞
exp {X+λ− n log(1 + eλ)} dλ , (A.1)

after of the transformation λ = log(θ/(1− θ)), (A.1) is

lim
α→±∞

EC(e
tλ|X+) =

Γ(X+ + t)Γ(n−X+ − t)

Γ(X+)Γ(n−X+)
, (A.2)

hence

lim
α→±∞

EC(λ|X+) = Ψ(X+)−Ψ(n−X+), (A.3)

the approximation of the Digamma function (see Abramowitz & Stegun
(1970)) is

Ψ(z) ≈ log(z)− 1

2z
−O(z−2), (A.4)

hence

lim
α→±∞

EC(λ|X+) ≈ log

(

X̄n

1− X̄n

)

− 1

2X+
+

1

2(n−X+)
(A.5)

−O(X−2
+ ) +O((n−X+)

−2).

Now, we show that (A.1) exist. Given the following functions of real variable
with positive real values,

F, f, τ : R −→ R
+ (A.6)

defined by the equations
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F (λ, t) =
exp{(X+ + t)λ}

(1 + eλ)n

f(λ) =
exp(X+λ)

(1 + eλ)n

τ(λ) =
1

β2 + λ2

where X+, n ∈ N; n ≥ 2, X+ ≥ 1 and β is a positive constant. We prove that
the convolutions of F ∗ τ and f ∗ τ , defined respectively by the equations

∫

R

F (λ)τ(α− λ)dλ =

∫ ∞

−∞

exp{X+λ− n log(1 + eλ) + tλ}
β2 + (λ− α)2

dλ (A.7)

∫

R

f(λ)τ(α− λ)dλ =

∫ ∞

−∞

exp{X+λ− n log(1 + eλ)}
β2 + (λ− α)2

dλ (A.8)

are finite. For λ ∈ (−∞,∞), we have

|F (λ)g(α− λ)| =
∣

∣

∣

∣

exp{(X+ + t)λ}
(1 + eλ)n(β2 + (α− λ)2)

∣

∣

∣

∣

≤ | exp(X+ + t)λ|
| exp(nλ)| β−2

≤ exp{(t− s)|λ|}
β2

= g(λ)

Since |F (λ)g(α−λ)| is dominated by the function g(λ), and g belongs to L1(R),
if t− s ≤ 0 (where s = n−X+ ≥ 1). Therefore F ∗ τ <∞. A similar argument
shows

|f(λ)g(α− λ)| ≤ exp{−s|λ|}
β2

(A.9)

and thus f ∗ τ <∞.

A.2 Conjugate Prior

Proof. We have EB(λ) → ∞ as a → ∞ and EB(λ) → −∞ as b → ∞, the
approximation of the posterior expectation for the conjugate Beta/Binomial
model is

EB(λ|X+) ≈ log

(

nX̄n + a

n(1− X̄n) + b

)

− 1

2(nX̄n + a)
+

1

2(n(1− X̄n) + b)
(A.10)

−O((nX̄n + a)2) +O((n(1− X̄n) + b)2)

and EB(λ|X+)→∞ as a→∞ and EB(λ|X+)→ −∞ as b→∞.
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B Proof of Result 5.1 Berger Prior

Proof. The Normal likelihood is

f(X̄n | η) =
√
n√

2πσ
exp

{

− n

2σ2
(η − (X̄n − µ))2

}

, (B.1)

it follows that the predictive satisfied the relation

m(X̄n) =

∫ 1

0

∫ ∞

−∞

K × exp
{

−n

2
K2

}

dη dν, (B.2)

where

K2 =

[

2νη2

(n+ 1)σ2 − 2σ2ν
+

1

σ2
(η − (X̄n − µ))2

]

. (B.3)

The method of completing the square tell us that

K2 =

[

η − (X̄n − µ)((n+ 1)σ2 − 2σ2ν)

(n+ 1)σ2

]2
(n+ 1)

(n+ 1)σ2 − 2σ2ν
(B.4)

+
2ν(X̄n − µ)2

(n+ 1)σ2
.

The generating-function of the posterior distribution (5.4) is given by

EBP (e
tλ | X̄n) =

∫ 1

0

∫∞

−∞
K × exp

{

−n
2K3

}

dη dν
∫ 1

0

∫∞

−∞
K × exp

{

−n
2K2

}

dη dν
, (B.5)

where

K3 =

[

2νη2

(n+ 1)σ2 − 2σ2ν
+

1

σ2
(η − (X̄n − µ))2 − 2t

n
(η + µ)

]

. (B.6)

Hence, the cumulant-generating function of the posterior distribution (5.4)
is given by

Kλ|X̄n
∝ log

[

1− exp

{

− nσ2

(n+ 1)

(

X̄n − µ

σ2
+

t

n

)2
}]

− 2 log

(

X̄n − µ

σ2
+

t

n

)

+ tµ+
nσ2

2

(

X̄n − µ

σ2
+

t

n

)2

. (B.7)
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