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Abstract

Random inequalities of the form

Prob(X > Y + δ)

often appear as part of Bayesian clinical trial methods. Simulating trial

designs could require calculating millions of random inequalities. When

these inequalities require numerical integration, or worse random sam-

pling, the inequality calculations account for the large majority of the

simulation time.

In this paper we show how to approximate random inequalities using

Edgeworth expansions. The calculations required to use these expansions

can be done in closed form, as we will see below. Although the calculations

are elementary, they are also somewhat tedious, and so we include Python

code to illustrate how to use the approximations in practice.

We make no distributional assumptions on the random variablesX and

Y other than requiring that the necessary moments exist. The accuracy of

the approximation will depend on how well the densities of these random

variables are approximated by the Edgeworth expansions.
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1 Approximations and integrals

Random inequalities between normal variates can be computed in closed form

[1]. Using a normal approximation corresponds to a 0th order Edgeworth ex-

pansion, and works surprisingly well for beta random variables [2]. However,

normal approximations have symmetric densities and can be a poor fit for ran-

dom variables that are significantly non-symmetric. Adding one more term to

the Edgeworth expansion creates an asymmetric approximation (if the density

being approximated is asymmetric) and hence improves accuracy.

Let X and Y be independent random variables whose third moments exist.

Let µX = E(X), σ2
X = V ar(X), and γX = E(X3) and similar for Y . Without

loss of generality, we can assume µx = 0 and σX = 1. This is because

Prob(X > Y + δ) = Prob

(
X − µX

σX
>
Y + δ − µX

σX

)
and so if necessary we replace Y with (Y + δ − µX)/σX . We can also assume

δ = 0 by absorbing the δ into the new definition of Y .

Let fX denote the PDF of X and FY the CDF of Y . Then

Prob(X > Y ) =

∫ ∞
−∞

fX(x)FY (x) dx.

We will approximate this integral by using Edgeworth approximations.

Denote the PDF of a Normal(µ, σ) random variable by

φ(x;m, s) =
1√
2πs

exp

(
− (x−m)2

2s2

)
.

When µ = 0 and σ = 1, denote φ(x;µ, σ) simply as φ(x). Similarly, Denote the

CDF of a Normal(µ, σ) random variable by Φ(x;µ, σ).

The first-order Edgeworth approximations of fX and FY are

fX(x) ≈ gX(x) = φ(x)
(

1 +
γX
6
H3(x)

)
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and

FY (x) ≈ GY (x) = Φ(x;µY , σY )− γY σY
6

H2

(
x− µY

σY

)
φ(x;µY , σY )

where H2(x) = x2 − 1 and H3(x) = x3 − 3x are the second and third Hermite

polynomials.

Then

Prob(X > Y ) ≈
∫ ∞
−∞

gX(x)GY (x) dx.

This integral equals

A− σY γY
6

B + aC − γXγY σY
6

D

where

A =

∫ ∞
−∞

φ(x) Φ(x;µY , σY ) dx

B =

∫ ∞
−∞

H2

(
x− µY

σY

)
φ(x) Φ(x;µY , σY ) dx

C =

∫ ∞
−∞

H3(x)φ(x) Φ(x;µY , σY ) dx

D =

∫ ∞
−∞

H3(x)H2

(
x− µy

σY

)
φ(x) Φ(x;µY , σY ) dx.

These integrals can be evaluated in closed form as we will show bellow. Note

that adding more terms to the Edgeworth expansion would add more integrals,

but it would not add a new type of integral, i.e. all additional integrals could

be computing using the techniques that follow.

In [1] we show that

A = Φ

(
−µY√
1 + σ2

Y

)
.

For the rest of the integrals we need the following result: The product of

two normal PDFs is given by the equation

φ(x;µ1, σ1)φ(x;µ2, σ2) = φ(µ1;µ2,
√
σ2
1 + σ2

2)φ(x, µ, σ)
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where

µ =
σ−21 µ1 + σ−22 µ2

σ−21 + σ−22

and

σ2 =
σ2
1σ

2
2

σ2
1 + σ2

2

.

For our purposes µ1 = 0 and σ1 = 0.

It follows that

B = φ(0;µY ,
√

1 + σ2
Y )

∫ ∞
−∞

H2

(
x− µY

σY

)
φ(x;µ, σ)

= φ(0;µY ,
√

1 + σ2
Y )

∫ ∞
−∞

(
x2

σ2
Y

− 2µY

σ2
Y

+
µ2
Y

σ2
Y

− 1

)
φ(x;µ, σ)

=
1

σ2
Y

φ(0;µY ,
√

1 + σ2
Y )
(
σ2 + µ2 − 2µY µ+ µ2 − σ2

Y

)
.

To evaluate C, we use the relation

d

dx
−H2(x)φ(x) = H3(x)φ(x)

to integrate by parts.

We have

C =

∫ ∞
−∞

H3(x)φ(x) Φ(x;µY , σY ) dx

=

∫ ∞
−∞

H2(x)φ(x)φ(x;µY , σY ) dx

= φ(0;µY ,
√

1 + σ2
Y )

∫ ∞
−∞

(x2 − 1)φ(x;µ, σ) dx

= φ(0;µY ,
√

1 + σ2
Y ) (σ2 + µ2 − 1)

Finally,

D =

∫ ∞
−∞

H3(x)H2

(
x− µy

σY

)
φ(x) Φ(x;µY , σY ) dx

= φ(0;µY ,
√

1 + σ2
Y )

∫ ∞
−∞

H3(x)H2

(
x− µy

σY

)
φ(x;µ, σ) dx
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=
1

σ2
Y

φ(0;µY ,
√

1 + σ2
Y )

∫ ∞
−∞

(x3 − 3)(x2 − 2µY x+ µ2
Y − σ2

Y )φ(x;µ, σ) dx

=
1

σ2
Y

φ(0;µY ,
√

1 + σ2
Y ) (m5 − 2µYm4 + (µ2

Y − σ2
Y − 3)m3 + 6µYm2 − 3(µ2

Y − σ2
Y )m1)

where

mr = E(W r)

and W ∼ Normal(µ, σ).

2 Sample code

from scipy.stats import norm

from scipy import sqrt

def phi(x, mu = 0, sigma = 1):

"Normal pdf"

return norm.pdf(x, mu, sigma)

def Phi(x, mu = 0, sigma = 1):

"Normal cdf"

return norm.cdf(x, mu, sigma)

def H2(x):

"Second Hermite polynomial, probabilist version"

return x*x - 1.

def H3(x):

"Third Hermite polynomial, probabilist version"
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return x**3 - 3*x

def edge_ineq(mu_x, sigma_x, gamma_x, mu_y, sigma_y, gamma_y, delta):

"Calculate P(X > Y + delta) given mean, stdev, and 3rd moment of X and Y"

"gamma_x = E(X^3), gamma_y = E(Y^3)"

mu_y = (mu_y + delta - mu_x)/sigma_x

sigma_y /= sigma_x

mu = mu_y/(sigma_y**2 + 1.)

sigma = sigma_y**2/(sigma_y**2 + 1.)

product_normalization = phi(0, mu_y, sqrt(sigma_y**2 + 1.))

# nth moments of normal distribution

m1 = mu

m2 = sigma**2 + mu*2

m3 = mu*(mu**2 + 3*sigma**2)

m4 = mu**4 + 6*mu**2*sigma**2 + 3*sigma**4

m5 = mu*(mu**4 + 10*mu**2*sigma**2 + 15*sigma**4)

integral1 = Phi(-mu_y/sqrt(sigma_y**2 + 1.))

integral2 = product_normalization

integral2 *= -gamma_y/(6.*sigma_y)

integral2 *= (m2 - 2.*mu_y*mu + mu_y**2 - sigma_y**2)
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integral3 = product_normalization

integral3 *= gamma_x/6.

integral3 *= m2 - 1

integral4 = product_normalization

integral4 *= -gamma_x*gamma_y/(36. * sigma_y)

s = m5 - 2.*mu_y*m4 + (mu_y**2 - sigma_y**2 - 3.)*m3

s += 6*mu_y*m2 - 3*(mu_y**2 - sigma_y**2)*m1

integral4 *= s

return integral1 + integral2 + integral3 + integral4

3 References

[1] John D. Cook. Numerical computation of stochastic inequality probabilities

(2003). UT MD Anderson Cancer Center Department of Biostatistics Working

Paper Series. Working Paper 46.

http://www.bepress.com/mdandersonbiostat/paper46/

[2] John D. Cook Fast approximation of beta inequalities (2012). UT MD

Anderson Cancer Center Department of Biostatistics Working Paper Series.

Working Paper 76.

http://www.bepress.com/mdandersonbiostat/paper76/

7


