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Abstract

This note explains how to calculate the probability

Pr(|X| > |Y |) (1)

for normal random variables X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ).

A random variable formed by taking the absolute value of a normal
random variable is known as a folded normal random variable.

When σX = σY , (1) can be evaluated simply using Equation (3)
below. When σX 6= σY , (1) can be reduced to a well-known problem
using Equation (4).

1 Removing absolute values

To make the problem (1) easier to work with, we restate the problem in a
form that does not involve absolute values. We begin by noting that the set
of points

{|x| > |y|}

is bounded by the lines x+ y = 0 and x− y = 0 and can thus be written as

{x+ y > 0 ∧ x− y > 0} ∪ {x+ y < 0 ∧ x− y < 0}.
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It follows that

Pr(|X| > |Y |) = Pr(X + Y > 0 ∧ X − Y > 0)
+ Pr(X + Y < 0 ∧ X − Y < 0).

Now define

U = X + Y

V = X − Y

and so

U ∼ N(µU , σ
2
U )

V ∼ N(µV , σ
2
V )

where µY = µx +µy, µU = µx +µy, and σ2
U = σ2

V = σ2
X +σ2

Y . We now have

Pr(|X| > |Y |) = Pr(U > 0 ∧ V > 0) + Pr(U < 0 ∧ V < 0). (2)

2 Joint probabilities

We now move on to calculating each of the inequalities on the right-hand
side of Equation (2). First note that

Pr(U > 0 ∧ V > 0) = Pr(U − µU > −µU ∧ V − µV > −µV )

= Pr
(
U − µU

σU
> −µU

σU
∧ V − µV

σV
> −µV

σV

)
= Pr

(
Z1 > −

µU

σU
∧ Z2 > −

µV

σV

)
where Z1 = (U − µU )/σU and Z2 = (V − µV )/σV are standard normal
random variables. Similarly,

Pr(U < 0 ∧ V < 0) = Pr
(
Z1 <

µU

σU
∧ Z2 <

µV

σV

)
.

The random variables Z1 and Z2 have correlation

σ2
X − σ2

Y

σ2
X + σ2

Y

.
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When σ2
X = σ2

Y , Z1 and Z2 are uncorrelated and we have

Pr(|X| > |Y |) = Φ
(
−µU

σU

)
Φ

(
−µV

σV

)
+ Φ

(
µU

σU

)
Φ

(
µV

σV

)
(3)

where Φ(x) is the CDF of a standard normal random variable.

When σ2
X 6= σ2

Y , Equation (3) does not hold. However, in that case we
may still evaluate Pr(|X| > |Y |) as

Pr
(
Z1 > −

µU

σU
∧ Z2 > −

µV

σV

)
+ Pr

(
Z1 <

µU

σU
∧ Z2 <

µV

σV

)
. (4)

Expression (4) cannot be evaluated in closed form. However, it does reduce
to a known problem: evaluating rectangular probabilities for a bivariate nor-
mal random variable. These can be reduced to a one-dimensional integral
that can be evaluated numerically. See “Numerical Computation of Rectan-
gular Bivariate and Trivariate Normal and t Probabilities” by Alan Genz,
Statistics and Computing, 14 (2004), pp. 151-160.
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