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Abstract

These notes write up some basic facts regarding the inverse gamma
distribution, also called the inverted gamma distribution. In a sense
this distribution is unnecessary: it has the same distribution as the
reciprocal of a gamma distribution. However, a catalog of results for
the inverse gamma distribution prevents having to repeatedly apply
the transformation theorem in applications.

Here we derive the distribution of the inverse gamma, calculate
its moments, and show that it is a conjugate prior for an exponential
likelihood function.

1 Parameterizations

There are at least a couple common parameterizations of the gamma distri-
bution. For our purposes, a gamma(α, β) distribution has density

f(x) =
1

Γ(α)βα
xα−1 exp(−x/β)

for x > 0. With this parameterization, a gamma(α, β) distribution has
mean αβ and variance αβ2.

Define the inverse gamma (IG) distribution to have the density

f(x) =
βα

Γ(α)
x−α−1 exp(−β/x)

for x > 0.
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2 Relation to the gamma distribution

With the above parameterizations, if X has a gamma(α, β) distribution
then Y = 1/X has an IG(α, 1/β) distribution. To see this, apply the
transformation theorem.

fY (y) = fX(1/y)
∣∣∣∣ ddy y−1

∣∣∣∣
=

1
Γ(α)βα

y−α+1 exp(−1/βy) y−2

=
(1/β)α

Γ(α)
y−α−1 exp(−(1/β)/y)

3 Moments

Next we calculate the moments of X ∼ IG(α, β). If α > n,

E(Xn) =
βα

Γ(α)

∫ ∞
0

xn x−α−1 exp(−β/x) dx

=
βα

Γ(α)

∫ ∞
0

xn−α−1 exp(−β/x) dx

=
βα

Γ(α)
Γ(α− n)
βα−n

=
βnΓ(α− n)

(α− 1) · · · (α− n)Γ(α− n)

=
βn

(α− 1) · · · (α− n)
.

In particular, for α > 1

E(X) =
β

α− 1
and for α > 2

E(X2) =
β2

(α− 1)(α− 2)
and so for α > 2

V ar(X) = E(X2)− E(X)2 =
β2

(α− 1)2(α− 2)
.
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4 Conjugate prior for exponential likelihood

Finally, suppose than an observation X |µ ∼ exponential(µ) and a priori
µ ∼ IG(α, β). By Bayes’ theorem, the posterior distribution on µ given an
observation X = x is proportional to

1
µ

exp(−x/µ)
1

µα+1
exp(−β/µ) =

1
µα+2

exp(−(β + x)/µ).

When normalized to be a probability distribution, the result is an IG(α+ 1,
β+x) distribution. In general, after observing x1, x2, . . . , xn, the posterior
distribution on µ is IG(α+ n, β +

∑n
i=1 xi).

The motivation for parameterizing the inverse gamma distribution the
way we do is to make the posterior distribution have the simple form above.

This document available at http://www.johndcook.com/inverse gamma.pdf.

3


