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Abstract

We show that moments of the truncated normal distribution provide
upper bounds on the tails of the non-central chi-squared distribution, then
develop upper bounds for the former.

Preliminaries

We are interested in obtaining upper bounds on P(Y > y) where Y is a
non-central chi-squared random variable with k degrees of freedom and non-
centrality parameter A\. The density function for such a random varialble is

given by

k) = gow (-252) (5 ) 1)

where I, is a modified Bessel function of the first kind.
Ifantis and Siafarikas give the following bounds in their paper [1].

For y >0 and v > —1/2,

1<T(v+1) <§)U I, (y) < coshy (2)



and for y > x>0 and v > —1/2,

exp(z — ) (;)D < Zg; < (;)V (3)

If we assume y > = = 1, equation (3) tells us

Py expty) > 1) > L0y (1

We could apply equation (2) to bound I,(1) if desired.

2 Upper bounds on non-central chi-squared tails

If we integrate equation (1) and apply inequality (4) we have

I 1 (1) o x E_q
/ flz; kN d 2exp( +1)/ exp(—§+V/\x)x dx (5)
provided y > 1 and k > 1.

The change of variable x = u? turns the integral above into

[g—l(l) /OO exp (_(u—\f)\)2> uF 1t du.
¢ Ju

This shows that the non-central chi-squared tail probability

/Oof(ac;k',)\)dx
y

is bounded by

YT () Iy (1) My ©)

where My_; = E(X*~!) and X is a normal(y, 1) random variable truncated
to the interval (/y,00).



3 Integral bounds

We now turn to finding upper bounds of the integral

o(z, 1,7) = /:o 1 exp (-“‘2”)2> dt (7)

When z = p and r is integer-valued, the function g(u, u,r) is related to
several special functions including the repeated integral of the error function
and parabolic cylinder functions. See [2] equations 7.2.3 and 19.14.2. However,
no one has given a name to the general function g(z, y, 7). Perhaps it could be
called an incomplete repeated integral of the error function, though that is a
mouthful.

William A. Huber suggested using the inequality
t" < a"exp (it — r)
x

for sufficiently large x in order to get an upper bound on the integral in
equation (7). Huber’s inequality holds because the exponential of any linear
function of ¢ eventually bounds any power of ¢ provided the leading coefficient
of the linear function is positive.

This shows that for sufficiently large x,

e8] _ 2
exp (_(tu) + Ty r) dt.

) ) < "

x

The integrand above is a quadratic function of ¢ and so the integral can be
computed in terms of the complementary error function as

2 [
0 T T—p— =
\Eexp (’“u*m) eric <ﬁ) (®)

We can further bound equation (8) by using the following bound from [2]
equation 7.1.13.

< VT exp(=2%)

erfe(z) <
2 z4+4/22+ %
This yields
7 T r? z"
g(x, p, 1) < —=exp (—xQ—r+M+22) _ (9)
2V2 z TS w42+ 2



4 Conclusions

The rth moment of a normal(y, 1) distribution truncated to the interval (z, 00)
is g(x, u,r)/®(x) and so an upper bound follows directly from equation (9).

Equation (6) bounds the tails of the non-central chi-squared distribution in
terms of moments of a truncated normal. Combining estimates we have
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for sufficiently large y where r =k — 1.
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