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Abstract

We show that moments of the truncated normal distribution provide
upper bounds on the tails of the non-central chi-squared distribution, then
develop upper bounds for the former.

1 Preliminaries

We are interested in obtaining upper bounds on P (Y > y) where Y is a
non-central chi-squared random variable with k degrees of freedom and non-
centrality parameter λ. The density function for such a random varialble is
given by
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exp
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−x+ λ
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2−1(
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λx) (1)

where Iν is a modified Bessel function of the first kind.

Ifantis and Siafarikas give the following bounds in their paper [1].

For y > 0 and ν > −1/2,

1 < Γ(ν + 1)
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and for y > x > 0 and ν > −1/2,

exp(x− y)
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(3)

If we assume y > x = 1, equation (3) tells us

Iν(1)
e

yν exp(y) > Iν(y) > Iν(1)yν . (4)

We could apply equation (2) to bound Iν(1) if desired.

2 Upper bounds on non-central chi-squared tails

If we integrate equation (1) and apply inequality (4) we have∫ ∞
y

f(x; k, λ) dx ≤
I k

2−1(1)

2 exp
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provided y > 1 and k > 1.

The change of variable x = u2 turns the integral above into

I k
2−1(1)

e

∫ ∞
√
y

exp
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√
λ)2

2

)
uk−1 du.

This shows that the non-central chi-squared tail probability

∫ ∞
y

f(x; k, λ) dx

is bounded by

√
π

2e
Φ(
√
y) I k

2
(1)Mk−1 (6)

where Mk−1 = E(Xk−1) and X is a normal(µ, 1) random variable truncated
to the interval (

√
y,∞).
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3 Integral bounds

We now turn to finding upper bounds of the integral

g(x, µ, r) =
∫ ∞
x

tr exp
(
− (t− µ)2

2

)
dt (7)

When x = µ and r is integer-valued, the function g(µ, µ, r) is related to
several special functions including the repeated integral of the error function
and parabolic cylinder functions. See [2] equations 7.2.3 and 19.14.2. However,
no one has given a name to the general function g(x, µ, r). Perhaps it could be
called an incomplete repeated integral of the error function, though that is a
mouthful.

William A. Huber suggested using the inequality

tr < xr exp
( r
x
t− r

)
for sufficiently large x in order to get an upper bound on the integral in

equation (7). Huber’s inequality holds because the exponential of any linear
function of t eventually bounds any power of t provided the leading coefficient
of the linear function is positive.

This shows that for sufficiently large x,

g(x, µ, r) < xr
∫ ∞
x

exp
(
− (t− µ)2

2
+
r

x
t− r

)
dt.

The integrand above is a quadratic function of t and so the integral can be
computed in terms of the complementary error function as
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)
. (8)

We can further bound equation (8) by using the following bound from [2]
equation 7.1.13.

erfc(z) ≤
√
π

2
exp(−z2)

z +
√
z2 + 4

π

This yields

g(x, µ, r) ≤ π

2
√

2
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)
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π

. (9)
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4 Conclusions

The rth moment of a normal(µ, 1) distribution truncated to the interval (x,∞)
is g(x, µ, r)/Φ(x) and so an upper bound follows directly from equation (9).

Equation (6) bounds the tails of the non-central chi-squared distribution in
terms of moments of a truncated normal. Combining estimates we have

∫ ∞
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for sufficiently large y where r = k − 1.
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