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This paper addresses the problem of numerically evaluating the probabilities P(X>Y),
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Abstract

This paper addresses the problem of numerically evaluating the
probabilities P (X > Y ), P (X > max(Y, Z)), and P (X < min(Y, Z))
where X, Y , and Z are independent gamma or inverse gamma random
variables.

Keywords: gamma distribution, stochastic inequalities, Appell F2 func-
tion, generalized order statistics

1 Introduction

In adaptively randomized clinical trials, the probability of assigning a treat-
ment increases as evidence accumulates in favor of that treatment being
better than its competitors. Such a design will, on average, assign more
patients to more effective treatments while retaining the benefits of ran-
domization.

When the primary endpoint of the trial is survival time, a common
method of conducting adaptively randomized trials requires calculating

P (X1 > X2)

or
P (X1 > max(X2, X3))
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for independent inverse gamma random variables Xi. When the primary end
point is time to a desirable event, say transplant engraftment, one needs to
calculate

P (X1 < X2)

or
P (X1 < min(X2, X3)) .

One may also consider trials with binary end points. These commonly
require evaluating similar stochastic inequalities, but for beta random vari-
ables. See [2] and [3] for more on calculating beta inequalities. In this note
we focus on (inverse) gamma random variables.

See [4] and [8] for more on the application of stochastic inequalities to
clinical trials. See [9] for clinical trial simulation software that employs the
algorithms given in this paper.

Note that these inequality probabilities are of interest outside of medical
applications. For example, in reliability engineering one may be interested
in survival times of mechanical devices rather than survival times of cancer
patients.

2 Preliminaries

2.1 Distribution parameterizations

There are two common parameterizations for both the gamma and inverse
gamma distribution. To avoid confusion, we state our parametrization con-
ventions as follows. A gamma random variable with shape parameter a > 0
and scale b > 0, abbreviated G(a, b), has PDF

1
Γ(a)ba

xa−1e−x/b.

And inverse gamma random variable with shape a > 0 and scale b > 0,
abbreviated IG(a, b), has PDF(

ba

xa+1Γ(a)

)
e−b/x.

With these parameterizations, X ∼ G(a, b) iff 1/X ∼ IG(a, 1/b).
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2.2 Reductions

Since
P (X1 > X2) = 1− P (X2 > X1)

and

P (X1 < min(X2, X3)) = 1−P (X1 > X2)−P (X1 > X3)+P (X1 > max(X2, X3))

we need only consider how to compute inequality probabilities of one random
variable being greater than another or the maximum of others.

Also, if Xi ∼ IG(ai, bi) and Yi = 1/Xi,

P (X1 > X2) = P (Y1 < Y2)

and
P (X1 > max(X2, X3)) = P (Y1 < min(Y2, Y3)) .

Therefore we may restrict our attention to gamma random variables.

3 Two variables

In a two-arm trial, we need to evaluate g2(a1, b1, a2, b2) defined as the prob-
ability P (X1 > X2) where Xi ∼ G(ai, bi).

In [2] we show that

g2(a1, b1, a2, b2) = Ib1/(b1+b2)(a2, a1)

where Ix(a, b) is the incomplete beta function.

4 Three variables

In a three-arm trial, we need to evaluate g3(a1, b1, a2, b2, a3, b3) defined as
P (X1 > max(X2, X3)) where Xi ∼ G(ai, bi).
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4.1 Analytical representations

In [4] we show that

g3 =
Γ(a1 + a2 + a3)

a2a3Γ(a1)Γ(a2)Γ(a3)

(
b1

b2

)a2
(

b1

b3

)a3

×F2

(
a1 + a2 + a3, a2, a3

a2 + 1, a3 + 1

∣∣∣∣∣− b1

b2
,−b1

b3

)
(1)

where F2 denotes the Appell function of the second kind. Note that a G(a, b)
random variable in the notation of this note corresponds to a G(1/b, a) in
the parameterization used in [4].

See [6] for numerically evaluating F2 for general arguments. Here, how-
ever, we take advantage of the special form of the arguments of F2 needed
for our our application.

Note that equation (1) only depends on the ratios b1/b2 and b1/b3 and
not on the b’s individually. This is because if X ∼ G(a, b), kX ∼ G(a, kb)
for any positive constant k. Thus we can multiply all the b’s by a positive
constant and not change the inequalities. We now simplify notation slightly
by assuming without loss of generality that b1 = 1.

Appell’s F2 function is defined in terms of a double series, though the
series representation is only valid for arguments (x, y) satisfying |x|+|y| < 1.
However, using results from section 206D of [7], one can express F2 as a
double integral obtaining

g3 =
Γ(a1 + a2 + a3)

Γ(a1)Γ(a2)Γ(a3)ba2
2 ba3

3

∫ 1

0

∫ 1

0

ua2−1va3−1

(1 + u/b2 + v/b3)a1+a2+a3
du dv. (2)

This integral representation gives an analytic continuation valid for all ar-
guments we need.

5 Upper and lower bounds

For any independent random variables Xi,

P (X1 > X2 and X1 > X3) ≤ P (X1 > X2).
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By symmetry one can reverse X2 and X3 and so

P (X1 > X2 and X1 > X3) ≤ min (P (X1 > X2), P (X1 > X3)) .

Also,

P (X1 > X2 and X1 > X3) = P (X1 > X2)P (X1 > X3 |X1 > X2)
≥ P (X1 > X2) P (X1 > X3).

Therefore if we let pj = P (X1 > Xj) then

p2 p3 ≤ P (X1 > max(X2, X3)) ≤ min(p2, p3) (3)

6 Numerical considerations

Routines for accurate and efficient evaluation of the incomplete beta function
are readily available. See for example [1] and [5]. Therefore the evaluation
of g2 is a solved problem. However, I am not aware of software any other
software to evaluate g3.

The integral (2) is easy to evaluate numerically if a2 and a3 are larger
than 1, but we only know that these parameters are positive. If either were
less than 1, the integrand would be singular along an edge of its domain.
To obtain a well-behaved integrand for all positive values of a2 and a3 we
integrate by parts twice. Let s = a1 + a2 + a3 and denote

I =
∫ 1

0

∫ 1

0

ua2−1va3−1

(1 + u/b2 + v/b3)s
du dv.

Then integration by parts show that

a2a3I =
s(s + 1)

b2b3

∫ 1

0

∫ 1

0

ua2va3

(1 + u/b2 + v/b3)s+2
du dv

+
s

b3

∫ 1

0

va3

(1 + 1/b2 + v/b3)s
dv

+
s

b2

∫ 1

0

ua2

(1 + u/b2 + 1/b3)s
dv

+
1

(1 + 1/b2 + 1/b3)s
(4)
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We obtain an accurate and efficient algorithm for evaluating the integrals
given in the appendix using Gaussian (product) quadrature with 32 nodes.
The integrals in equation (4) have no singularities and Gaussian quadrature
works quite well. However, one must be careful about numerical overflow
and underflow. In application, the shape parameters ai can be large enough
that the factor

Γ(a1 + a2 + a3)
Γ(a1)Γ(a2)Γ(a3)

(5)

will overflow or that the integrals in equation (4) underflow. The solution
to this problem is to first evaluate the logarithm of expression (5) by using
a routine for log Γ(x). Then in the routines for evaluating the integrands in
equation (4) first evaluate the logarithm of the integrands, add the logarithm
of expression (5), and then exponentiate.

This procedure becomes less accurate when one of the random variables
Xi is very likely to be larger than one of the others. Fortunately, this
is precisely when inequality (3) becomes tighter. For our application to
clinical trial randomization, we are interested in controlling absolute error
rather than relative error: we do not need to know small probabilities to
many significant figures.

Define pi as in (3). Furthermore, let pmin = min(p2, p3) and pmax =
max(p2, p3). Then

pmin pmax ≤ g3 ≤ pmin

and so if pmin(1− pmax) < 2ε then the error in the approximation

g3 ≈
pmin(1− pmax)

2
(6)

is less than ε.

7 Testing the algorithm

We implemented the algorithm in this report, using the approximation (6)
whenever one of the probabilities on the right was either below ε = 0.001 or
above 1 − ε. We generated 100,000 vectors of the form (u1, . . . , u6) with
each ui being a uniform random sample from (0.1, 90). For each such
vector, we evaluated g3(u1, u2, u3, u4, u5, u6), g3(u3, u4, u5, u6, u1, u2), and
g3(u5, u6, u1, u2, u3, u4). In theory, these values should sum to 1.
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The average absolute error was 5.477 × 10−5 and the maximum error
was 0.00343. The largest errors occur when one of the three probabilities is
very small. If we throw out cases where one of the probabilities is less than
0.005, the average error drops to 1.016 × 10−6 and the maximum error to
0.00261.
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