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Numerical Computation of Stochastic
Inequality Probabilities

Abstract

This paper addresses the problem of numerically evaluating

P(X > Y ) (1)

for independent continuous random variables X and Y . This calculation arises
in the design of clinical trials and as such appears in the inner loop of simulations
of these trials. An early example of this is given by Thompson (1933), with more
recent examples by Giles et al (2003), and Berry (2003, 2004). It is worthwhile to
optimize the calculation of these probabilities as they may be computed millions
of times in the course of simulating a single trial. Techniques such as memo-
ization (Orwant 2002) can eliminate redundant calculations of such probabilites
throughout a simulation, but the need for a large number of evaluations remains.

After considering how to compute (1) in general, we present optimizations for
important special cases in which X and Y both belong to one of the following
families of classical distributions: exponential, gamma, inverse gamma, normal,
Cauchy, beta, and Weibull.



Numerical Computation of Stochastic Inequality

Probabilities

John D. Cook
Division of Quantitative Sciences, Unit 1409

The University of Texas, M. D. Anderson Cancer Center
P. O. Box 301402, Houston, Texas 77030, USA

cook@mdanderson.org

First published December 10, 2003. This revision August 8, 2008.

Abstract

This paper addresses the problem of numerically evaluating

P (X > Y ) (1)

for independent continuous random variables X and Y . This calcula-
tion arises in the design of clinical trials and as such appears in the
inner loop of simulations of these trials. An early example of this is
given by Thompson (1933), with more recent examples by Giles et al
(2003), and Berry (2003, 2004). It is worthwhile to optimize the calcu-
lation of these probabilities as they may be computed millions of times
in the course of simulating a single trial. Techniques such as mem-
oization (Orwant 2002) can eliminate redundant calculations of such
probabilites throughout a simulation, but the need for a large number
of evaluations remains.

After considering how to compute (1) in general, we present opti-
mizations for important special cases in which X and Y both belong
to one of the following families of classical distributions: exponential,
gamma, inverse gamma, normal, Cauchy, beta, and Weibull.

Keywords: adaptive clinical trials, beta distribution, gamma distribution

1 General Distributions

For a continuous random variable X, let fX and FX be the PDF and CDF
respectively of X and let GX = 1− FX .
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We will consider all density functions to be defined over (−∞,∞) though
they may be identically zero over parts of this domain.

The probability that X > Y is given by

P (X > Y ) =
∫ ∞
−∞

fX(t)FY (t) dt.

Let η =
√
ε/2. Define

a∗ = min(F−1
X (η), F−1

Y (η))
b∗ = max(G−1

X (η), G−1
Y (η))

Then

0 <
∫ a∗

−∞
fX(t)FY (t) dt <

∫ a∗

−∞
fX(t)FY (a∗) dt = FX(a∗)FY (a∗) < ε/2

since FX is an increasing function and we freeze it at its largest value over
the region of integration.

Also,∫ ∞
b∗

fX(t)FY (t) dt =
∫ ∞

b∗
fX(t)FY (b∗) dt+

∫ ∞
b∗

fX(t)(FY (t)− FY (b∗)) dt

= GX(b∗)FY (b∗) +
∫ ∞

b∗
fX(t)(FY (t)− FY (b∗)) dt.

Now ∫ ∞
b∗

fX(t)(FY (t)− FY (b∗)) dt <

∫ ∞
b∗

fX(t)(1− FY (b∗)) dt

= GX(b∗)GY (b∗).

It follows that∫ ∞
−∞

fX(t)FY (t) dt ≈
∫ b∗

a∗
fX(t)FY (t) dt+GX(b∗)FY (b∗). (2)

with an error less than ε. Also, the right side of (2) is a lower bound as well
as an approximation.

The integral above can be integrated using an adaptive integration routine.
(DQAG from QUADPACK (Piessens et al 1983) is a popular example of such a
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routine.) However, such routines may need help finding dramatic changes
in the integrand. For example, if fX is a spike centered in the tail of FY ,
the numerical routine may miss the mass under fX entirely. For this reason
we recommend an optimization routine to first find the maximum of the
integrand and split the domain of integration into three intervals, the middle
interval being centered around the maximum.

2 Special Distributions

2.1 Exponential

If X has an exponential with mean µX and Y has an exponential with mean
µY then it is well known that

P (X > Y ) =
µX

µX + µY
. (3)

See, for example, the work of Casella and Berger (2001).

2.2 Gamma

Let X have a gamma (αX , βX) distribution and Y a gamma (αY , βY ) dis-
tribution. One can show via the transformation theorem that the random
variable B defined by

B =
βXY

βXY + βYX

has a beta (αY , αX) distribution. It follows that

P (X > Y ) = P

(
B <

βX

βX + βY

)
(4)

and so P (X > Y ) can be computed by evaluating an incomplete beta func-
tion. See the work of Abramowitz and Stegun (1970) and DiDonato and
Morris (1992) for details on computing the incomplete beta function.

2.3 Inverse Gamma

If Z has an inverse gamma distribution with parameters (α, β) then 1/Z has
a gamma distribution with parameters (α, 1/β). Thus for random variables
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X and Y with inverse gamma distributions, we use

P (X > Y ) = P (1/Y > 1/X) (5)

to take advantage of the method above for comparing gamma random vari-
ables.

2.4 Normal

Let X, Y , and Z be normal random variables with parameters (µX , σX),
(µY , σY ), and (0,1) respectively.

P (X > Y ) = P (0 > Y −X)
= P (0 > µY − µX + (σ2

X + σ2
Y )1/2Z)

= P

(
Z <

µX − µY

(σ2
X + σ2

Y )1/2

)

= Φ

(
µX − µY

(σ2
X + σ2

Y )1/2

)

where Φ is the distribution function of a standard normal. Abramowitz and
Stegun (1970) provide methods of evaluating Φ.

2.5 Cauchy

Let X, Y , and C be Cauchy random variables with parameters (µX , σX),
(µY , σY ), and (0,1) respectively.

P (X > Y ) = P (0 > Y −X)
= P (0 > µY − µX + (σX + σY )C)

= P

(
C <

µX − µY

σX + σY

)
=

1
2

+
1
π

tan−1
(
µX − µY

σX + σY

)
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2.6 Beta

2.6.1 Symmetries and Recurrences

Define
g(a, b, c, d) = P (X > Y )

where X and Y are distributed as beta(a, b) and beta(c, d) respectively. The
function has three fundamental symmetries. First of all, g obviously satisfies

g(a, b, c, d) = 1− g(c, d, a, b). (6)

The change of variables u = 1− x reveals that

g(a, b, c, d) = g(d, c, b, a) (7)

as well. Thompson (1933) was aware of these two symmetries but was
apparently not aware that

g(a, b, c, d) = g(d, b, c, a) (8)

as well.

To prove this symmetry in the first and last arguments, we note that

g(a, b, c, d) =
∫ 1

0

xa−1(1− x)b−1

B(a, b)
Ix(c, d) dx (9)

where Ix(c, d) is the incomplete beta function, the CDF of a beta(c, d) ran-
dom variable. Equation 26.5.16 from the work of Abramowitz and Stegun
(1970) says that

Ix(c, d) =
1

cB(c, d)
xc(1− x)d + Ix(c+ 1, d). (10)

Substituting (10) in (9) shows that

g(a, b, c, d) =
B(a+ c, b+ d)
cB(a, b)B(c, d)

+ g(a, b, c+ 1, d). (11)

Define

h(a, b, c, d) =
B(a+ c, b+ d)
B(a, b)B(c, d)

(12)

=
Γ(a+ c)Γ(b+ d)Γ(a+ b)Γ(c+ d)
Γ(a)Γ(b)Γ(c)Γ(d)Γ(a+ b+ c+ d)

(13)
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Since
lim

c→∞
g(a, b, c, d) = 0

it follows that

g(a, b, c, d) =
∞∑

n=0

h(a, b, c+ n, d)
c+ n

.

Each term is symmetric in a and d and therefore g is as well.

Combining the basic symmetries reveals further symmetries. For example,
(8) and (7) shows that g is also symmetric in its second and third arguments.

The symmetry relations and equation (11) combine to show that

g(a+ 1, b, c, d) = g(a, b, c, d) + h(a, b, c, d)/a
g(a, b+ 1, c, d) = g(a, b, c, d)− h(a, b, c, d)/b
g(a, b, c+ 1, d) = g(a, b, c, d)− h(a, b, c, d)/c
g(a, b, c, d+ 1) = g(a, b, c, d) + h(a, b, c, d)/d

In clinical trial simulations, one often starts by evaluating g(a, b, c, d) for
small arguments and increments different arguments by 1 as outcomes are
recorded. In this setting we can evaluate g from scratch one time and re-
peatedly apply the recurrence relationships above.

If we need to directly evaluate g for moderate-sized parameters, we can
use the recurrence relationships to reduce the problem to evaluating g with
parameters in the interval [1, 2). (If the parameters are integers, the prob-
lem can be reduced to g(1, 1, 1, 1) which clearly equals 1/2.) This approach
is inefficient for large values of the parameters because the number of cal-
culations required is proportional to the size of the parameters. However,
asymptotic methods are available for large parameters. Therefore we present
two methods for evaluating g, one for small parameters and one for large
parameters, and rely on the recurrence relationships in the middle.

2.6.2 Small arguments

We begin by expanding the integrand of (9) in series:

g(a, b, c, d) =
1

B(a, b)B(c, d)

∫ 1

0

xa+c−1
∞∑

j=0

αjx
j

( ∞∑
k=0

βkx
k

)
dx
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where

αj =

(
b− 1
j

)
(−1)j

and

βk =

(
d− 1
k

)
(−1)k

c+ k
.

We combine the series in the integrand to

g(a, b, c, d) =
1

B(a, b)B(c, d)

∫ 1

0
xa+c−1

∞∑
n=0

γnx
n dx

where γn is the convolution

γn =
∑

j+k=n

αjβk.

We could exchange the order of integration and summation above. How-
ever, the rate of convergence would be unacceptably slow since the radius
of convergence of the series is 1. By splitting the domain of integration into
two halves, we obtain more rapid convergence.

Define

g`(a, b, c, d) =
∫ 1/2

0

xa−1(1− x)b−1

B(a, b)
Ix(c, d) dx

gr(a, b, c, d) =
∫ 1

1/2

xa−1(1− x)b−1

B(a, b)
Ix(c, d) dx

so that
g(a, b, c, d) = g`(a, b, c, d) + gr(a, b, c, d).

By symmetry we can show that

gr(a, b, c, d) = I1/2(b, a)− g`(b, a, d, c)

and so it suffices to be able to compute g`.

We have

g`(a, b, c, d) =
1

B(a, b)B(c, d)

∞∑
n=0

γn

(a+ c+ n)2a+c+n

and must now decide where to truncate the infinite sum.
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Note that

|γn| =

∣∣∣∣∣
n∑

i=0

(
b− 1
n− 1

)(
d− 1
i

)
1

c+ i

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=0

(
b− 1
n− i

)(
d− 1
i

)
1
i

∣∣∣∣∣
=

∣∣∣∣∣(d− 1)

(
b+ d− 3
n− 1

)∣∣∣∣∣
(The absolute value signs are necessary since b and d may not be integers.)

It follows that for N > b + d − 2, the error in the series truncated after N
terms is bounded by

|d− 1|
B(a, b)B(c, d)

∞∑
n=N+1

1
(a+ c+ i)2a+c+i

and the sum is bounded by

1
(a+ c+N)2a+c+N

.

¿From this it is simple to determine the size of N necessary for the desired
accuracy.

Because of the alternating signs in the series, there can be a numerical loss of
precision when using this series to evaluate g(a, b, c, d) for large parameters.
However, because of the recurrence relations and the asymptotitc approx-
imation below, it is unnecessary to use the series approximation for large
parameters.

If we were numerically integrating (9) to evaluate g, arguments less than 1
would be a special concern since they cause the integrand to be singular at
one or both ends. However, in the development of this section, arguments
less than 1 do not require special treatment.

2.6.3 Large arguments

Wise (1960) showed that if X is a beta random variable then (− logX)1/3 is
approximately normal, and the approximation improves as the parameters
become larger. The approximation also improves if the parameters are ap-
proximately equal. For example, if all parameters are between 4 and 5, the
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error in computing g is bounded by 0.0002. Therefore, for large arguments,
we reduce the problem of comparing beta random variables to that of com-
paring normal random variables as described above. Wise gives equations
for approximating the mean and variance of the transformed variables. How-
ever, we find the the approximations given by the delta method are more
accurate. If X is distributed as beta(a, b) then the mean and variance of
Y = (− logX)1/3 are approximately(

− log
a

a+ b

)1/3

and
1
9

(
− log

a

a+ b

)−4/3 ab

(a+ b)2(a+ b+ 1)

respectively.

Depending on one’s accuracy requirements, it may be more efficient to use
the recurrence relations to transform the problem of small arguments to one
with moderately large arguments.

2.7 Weibull

Let X have a Weibull distribution with shape a and scale b and let Y have
a Weibull distribution with shape c and scale d.

P (X < Y ) =
∫ ∞
0

a

b

(
x

b

)a−1

exp
(
−
(
x

b

)a

−
(
x

d

)c)
dx.

The difficulty in evaluating this integral comes if a < 1 in which case the
integrand is singular at 0.

The change of variables

u =
(
x

b

)a

transforms the above integral to

∫ ∞
0

exp
(
−u− (b/d)cuc/a

)
dx. (14)

The latter integral is much better behaved: for all values of the paramters
it is bounded at 0 and is monotone decreasing.
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By swapping the role of X and Y if necessary, we may assume that a < c,
which makes the integrand decay to zero faster and shortens the domain of
integration.

3 Timings

For the following timing results, we calculated P (X > Y ) for beta, gamma,
and Weibull distributions. In each case the calculation was carried out
100,000 times with parameters chosen randomly. For Weibull and gamma
distributions, the shape and scale parameters were chosen uniformly from
[0.5, 10.5]. For beta distributions, the parameters were chosen uniformly
from (0, 100). Probabilities were calculated by simulation and by integration
where the target accuracy was 0.01. Times are given in seconds.

Distribution Simulation Integration
beta 808.0 0.281
gamma 247.1 0.391
Weibull 447.9 7.468

4 Conclusions

We have given a method for determining finite limits of integration for com-
puting

P (X > Y )

for general distributions as well as practical suggestions on how to carry
out the resulting numerical integration. We have also discussed how to
handle singularities which sometimes arise when comparing beta or Weibull
distributions. In the case of exponential, normal, and Cauchy distributions,
the probability can be calculated in terms of elementary functions. For
gamma and inverse gamma distributions, the probability can be computed in
terms of an incomplete beta distribution. For beta and Weibull distributions,
we have not discovered closed forms in general but have presented efficient
numerical approximations.
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5 Addendum

The present version of this paper corrects an error in the results for the
Cauchy distribution. Also, additional references have been added to results
published since the first version of this paper appeared, namely Cook (2005,
2005) and Cook and Nadarajah (2006).
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