The "pqr" theorem

John Cook

November 6, 1993

Suppose p, q and r are seminorms on V. Suppose p+r and p+q are norms. Define

$$||u||_{pr} \equiv p(u) + r(u)$$

$$||u||_{pq} \equiv p(u) + q(u)$$

$$||u||_{r} \equiv r(u)$$

and let V_{pr} , V_{pq} and V_r denote V with each of these (semi-) norms. If V_{pr} is reflexive, embeds continuously into V_{pq} , and embeds compactly into V_r , then V_{pq} embeds continuously into V_{pr} and so the pq and pr norms are equivalent.

Proof. Suppose V_{pq} does not imbed into V_{pr} . Then there exists a sequence v_n such that $||v - n||_{pr} = 1$ and $||v - n||_{pq} \to 0$. Since $\{v_n\}$ is a bounded sequence in a reflexive Banach space, it has a subsequence $v_i \to v$ in V_{pr} . By compactness, $v_i \to v$ in V_r . By continuity, $v_i \to v$ in V_{pq} , but $v_i \to 0$ in V_{pq} and so v must be 0. From the definitions,

$$||v_i||_{pq} + ||v_i||_r \ge ||v_i||_{pr}.$$

Since $v_i \to 0$ in V_{pq} and V_r , the left side goes to zero and so $||v_i|| \to 0$. O. Since every subsequence of v_n has a further subsequence that converges to 0, it must be the case that the original sequence $\{v_n\}$ goes to 0.

A typical application would be to show that the principal part of the $W^{1,p}$ norm bounds the full norm under certain circumstances. For example, suppose Ω is bounded. If φ has zero average, one can show that the norm of gradient of φ controls the norm of φ by setting

$$p(\varphi) = \|\vec{\nabla}\varphi\|_{L^{p}(\Omega)},$$

$$r(\varphi) = \|\varphi\|_{L^{p}(\Omega)},$$

$$q(\varphi) = |\int_{\Omega} \varphi \, dx|.$$

(Basically, the principle part of the $W^{1,p}$ norm almost controls the L^p part. The seminorm q need only be strong enough to distinguish constant functions. For example q could be the integral of φ over some subset of Ω or $\partial\Omega$ of positive measure.)