
Basic properties of the soft maximum

John Cook
Department of Biostatistics, Unit 1409

The University of Texas, M. D. Anderson Cancer Center
Houston, Texas 77030, USA

cook@mdanderson.org

September 7, 2011

Abstract

This note presents the basic properties of the soft maximum, a
smooth approximation to the maximum of two real variables. It con-
cludes by looking at potential numerical difficulties with the soft max-
imum and how to avoid these difficulties.

Keywords: soft maximum, optimization, overflow, underflow

1 Introduction

It is often necessary in applications to take the maximum of two numbers.
But the simple function

f(x, y) = max(x, y)

can be difficult to work with because it has a sharp corner along the line
x = y. Sometimes you want an alternative that sands down the sharp edges
of the maximum function. One such alternative is the soft maximum. The
soft maximum g(x, y) has three desirable properties.

1. g(x, y) infinitely differentiable everywhere.

2. g(x, y) is convex.

3. lim|x−y|→∞ = max(x, y).

1

This report call the maximum function the “hard” maximum to make it
easier to compare to the soft maximum.

2 Analytical properties

The soft maximum of two variables is the function

g(x, y) = log(exp(x) + exp(y)).

See Convex Optimization by Stephen Boyd and Lievan Vandenberghe,
Cambridge University Press, 2004.

The definition of soft maximum can be extended to more than two vari-
ables by taking

g(x1, x2, . . . , xn) = log(exp(x1) + exp(x2) + · · · + exp(xn)).

To see that the soft maximum approximates the hard maximum, note
that if x is a little bigger than y, exp(x) will be a lot bigger than exp(y).
That is, exponentiation exaggerates the differences between x and y. If x is
significantly bigger than y, exp(x) will be so much bigger than exp(y) that
exp(x) + exp(y) will essentially equal exp(x) and the soft maximum will be
approximately log(exp(x)) = x, the hard maximum.

The soft maximum approximates the hard maximum and is a convex
function just like the hard maximum. But the soft maximum is smooth.
It has no sudden changes in direction and is infinitely differentiable. These
properties make it useful in convex optimization algorithms.

Notice that the accuracy of the soft maximum approximation depends
on scale. If you multiply x and y by a large constant, the soft maximum
will be closer to the hard maximum. For example, g(1, 2) = 2.31, but g(10,
20) = 20.00004. This suggests you could control the “hardness” of the soft
maximum by generalizing the soft maximum to depend on a parameter k.

g(x, y; k) = log(exp(kx) + exp(ky))/k

You can make the soft maximum as close to the hard maximum as you
like by making k large enough. For every value of k the soft maximum is

2

differentiable, but the partial derivatives near x = y become larger as k
increases. In the limit the partial derivatives become infinite as the soft
maximum converges to the hard maximum.

3 Numerical properties

The most obvious way to compute the soft maximum function in C would
be

double SoftMaximum(double x, double y)

{

return log(exp(x) + exp(y));

}

This works for some values of x and y, but fails if x or y is large. For
example, if we use this to compute the soft maximum of 1000 and 200, the
result is numerical infinity when using standard (IEEE 754) double preci-
sion arithmetic. The value of exp(1000) is too big to represent in a floating
point number, so it is computed as infinity. The value of exp(200) is finite,
but the sum of an infinity and a finite number is infinity, and the log func-
tion applied to infinity returns infinity. See What every computer scientist
should know about floating-point arithmetic by David Goldberg, Computing
Surveys, March, 1991. Available at http://bit.ly/gwt4Z4.

We have the opposite problem if we try to compute the soft maximum
of -1000 and -1200. In this computation exp(−1000) and exp(−1200) both
underflow to zero, and the log function returns negative infinity for the
logarithm of zero.

Fortunately it is not hard to fix the function SoftMaximum to avoid over-
flow and underflow. If we shift both arguments by a constant c,

log(exp(x− c) + exp(y − c)) = log(exp(x) + exp(y)) − c.

and so

log(exp(x) + exp(y)) = log(exp(x− c) + exp(y − c)) + c.

If we pick c to be the (hard) maximum of x and y, then one of the
calls to exp has argument 0 (and so returns 1) and the other has a negative
argument. This means the following code cannot overflow.

3

double SoftMaximum(double x, double y)

{

double maximum = max(x, y);

double minimum = min(x, y);

return maximum + log(1.0 + exp(minimum - maximum));

}

The call to exp(minimum - maximum) could possibly underflow to zero,
but in that case the code returns maximum. And in that case the return
value is very accurate: if maximum is much larger than minimum, then the
soft maximum is essentially equal to maximum.

The equation for the soft maximum implemented above has a few ad-
vantages in addition to avoiding overflow. It makes it clear that the soft
maximum is always greater than the maximum. Also, it shows that the
difference between the hard maximum and the soft maximum is controlled
by the spread of the arguments. The soft maximum is nearest the hard
maximum when the two arguments are very different and furthest from the
hard maximum when the two arguments are equal.

4

