Define $T(n, 1)=n$ and for $k>0$ define

$$
T(n, k)=\sum_{i=1}^{n} T(i, k-1)
$$

The numbers $T(n, 2)$ are the triangle numbers, $T(n, 3)$ are the tetrahedral numbers, and $T(n, k)$ are the k-dimensional analogs of the tetrahedral numbers.

There is a simple formula for $T(n, k)$ and the formula can be proved easily using induction. However, the formula appears unmotivated. We can derive a formula for $T(n, k)$ in a more systematic way using the calculus of finite differences.

First, we define the finite difference operator Δ, a discrete analog of the derivative.

$$
\Delta f(x)=f(x+1)-f(x)
$$

There is a finite difference theorem for sums analogous to the fundamental theorem of calculus for integrals. If $\Delta F(x)=f(x)$ then

$$
\sum_{a \leq x<b} f(x)=F(b)-F(a)
$$

Next, we define falling and rising powers, also known as factorial powers.
The k th falling power of x is defined as

$$
x^{\underline{k}}=x(x-1)(x-2) \cdots(x-k+1)
$$

The k th rising power of x is defined as

$$
x^{\bar{k}}=x(x+1)(x+2) \cdots(x+k-1)
$$

The finite difference operator Δ operates on rising and falling powers analogously to the way the derivative operates on powers:

$$
\begin{aligned}
\Delta x^{\underline{k}} & =k x^{\underline{k-1}} \\
\Delta x^{\bar{k}} & =k(x+1)^{\overline{k-1}}
\end{aligned}
$$

This means we can find the analog of anti-derivatives for falling and rising powers.

$$
\begin{aligned}
\Delta\left(\frac{x^{\frac{k+1}{k+1}}}{k+1}\right. & =x^{\underline{k}} \\
\Delta\left(\frac{(x-1)^{\overline{k+1}}}{k+1}\right) & =x^{\bar{k}}
\end{aligned}
$$

Now we are ready to derive the formula for $T(n, k)$. It's well known that the triangular numbers $T(n, 2)$ are given by $n(n+1) / 2$. The $n(n+1)$ term is a rising power, and so we might suspect that there is a formula for $T(n, k)$ in terms of rising powers. We have $T(n, 2)=n^{\overline{2}} / 2$!. It is also trivial to check that $T(n, 1)=n^{\overline{1}} / 1$!. We suspect $T(n, k)=n^{\bar{k}} / k!$.

Note that if we define

$$
F(x)=\frac{(x-1)^{\bar{k}}}{k!}
$$

then

$$
\Delta F(x)=\frac{x^{\overline{k-1}}}{(k-1)!}
$$

We can now prove our formula in a simple calculation.

$$
T(n, k)=\sum_{1 \leq x<n+1} \frac{x^{\overline{k-1}}}{(k-1)!}=F(n+1)-F(1)=\frac{n^{\bar{k}}}{k!}
$$

