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Many combinatorial problems can be framed as counting the number of ways

to allocate balls to urns, subject to various conditions. Richard Stanley invented

the \twelvefold way" to organize these results into a table with twelve entries.

See his book Enumerative Combinatorics, Volume 1.

Let b represent the number of balls available and u the number of urns. The

following table gives the number of ways to partition the balls among the urns

according to the various states of labeled or unlabeled and subject to certain

restrictions. The column headed \≤ 1" corresponds to requiring that there

be no more than one ball in each urn. Similarly, the column headed \≥ 1"

corresponds to requiring at least one ball in each urn.

Balls Urns unrestricted ≤ 1 ≥ 1

labeled labeled ub (u)b u!S(b, u)

unlabeled labeled
((

u
b

)) (
u
b

) ((
u

b−u

))
labeled unlabeled

∑u
i=1 S(b, i) [b ≤ u] S(b, u)

unlabeled unlabeled
∑u

i=1 pi(b) [b ≤ u] pu(b)

For convenient cross referencing, we will refer to each of the cases by three

symbols. The �rst character is an l or a u depending on whether the balls
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are labeled or unlabeled. The second character similarly indicates whether the

urns are labeled or unlabeled. The �nal character is one the regular expression

symbols *, ?, or + indicating no restrictions, at most one ball per urn, and at

least one ball per urn respectively.

1 Labeled balls, labeled urns, unrestricted (ll*)

This is the number of b-tuples of u things. There are u choices for which urn

the �rst ball should go in, u choices for where the second ball should go, and

so forth for a total of ub possibilities.

2 Labeled balls, labeled urns, ≤ 1 (ll?)

There are u choices for where to place the �rst ball, u − 1 for where to place

the second ball, and so forth for a total of

u(u− 1) · · · (u− b+ 1) = (u)b

possibilities. (u)b is also written ub. This is sometimes read \u to b factors"

or \the bth falling power of u."

Note that if u = b then (u)b = u!. Also, if b > u then (u)b = 0 because

there are too many balls for each urn to hold only one.

3 Unlabeled balls, labeled urns, unrestricted (ul*)

The number of ways to choose k things from a set of size n is
(
n
k

)
. This is

selection without replacement. By analogy, Stanley de�nes
((

n
k

))
to be the

number of ways to choose k items from a set of size n with replacement. The

number of ways to distribute b unlabeled balls into u urns is
((

u
b

))
because for
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each ball one can choose which urn to put it in. Since an urn can be selected

several times, this is choosing with replacement. (It is important to think of

choosing urns, not balls.)

Another way of viewing the analogy above is that whereas
(
n
k

)
gives the

number of subsets of size k from a set of size n,
((

n
k

))
gives the number of

k-element multisets drawn on a set of n elements.

It turns out that ((
n

k

))
=

(
n+ k− 1

k

)
and so the number of ways to distribute b unlabeled balls into u urns is

(
u+b−1

b

)
.

This can be proven via Feller's stars-and-bars argument as follows.

Imagine the u urns as the spaces between u+ 1 vertical bars. Represent the

balls as stars between the bars. For example, |*||***| gives an illustration of

one way to assign four balls to three cells. There must be a bar in the �rst and

last position, but otherwise there are as many ways to assign b balls to u urns

as there are ways to arrange the stars and bars. There are u−1 bars that we are

free to move and b stars, for a total of u+b− 1 symbols. Among the u+b− 1

positions for these symbols, we choose b in which to put stars and �ll the rest

with bars. Thus there are
(
u+b−1

b

)
possibilities.

In some sense Stanley's notation is unnecessary since it easily reduces to

binomial coe�cients. However, some equations are cleaner and more memorable

using his notation.((
n
k

))
is also the number of solutions to the equation

x1 + x2 + · · ·+ xn = n+ k

in positive integers.
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4 Unlabeled balls, labeled urns, ≤ 1 (ul?)

If there can be no more than one ball in each urn, the process reduces to

determining which b of the u urns will get a ball, and there are
(
u
b

)
ways to

choose b urns out of the total of u urns.

5 Unlabeled balls, labeled urns, ≥ 1 (ul+)

Stanley gives the solution to this problem as
((

u
b−u

))
which reduces to

(
b−1
u−1

)
.

Stanley's derivation is as follows. Put one ball in each urn. Now there are

b−u balls that can be distributed without restriction and so by problem (ul*),

this can be done in
((

u
b−u

))
ways.

Feller derives the same result directly as follows. Imagine the u urns as the

spaces between u + 1 bars. We �rst think of the b stars lined up and decide

where to place the bars. We must place one bar before the �rst star and one

after the last star. The remaining u − 1 bars must be distributed among the

b− 1 spaces between stars. Thus there are
(
b−1
u−1

)
possibilities.

6 Labeled balls, unlabeled urns, ≥ 1 (lu+)

The notation S(n, k) denotes Stirling numbers of the second kind. Knuth uses

a notation { I have not found out yet how to reproduce it in LATEX{ that looks

like
(
n
k

)
with the parentheses replaced with curly braces {}. Knuth pronounces

his symbol \n subset k" and calls the Stirling numbers of the second kind

\subset numbers." His notation and pronunciation are more mnemonic than

their traditional counterparts. S(n, k) is de�ned to be the number of ways to

partition n objects into k non-empty, unordered sets. For example, S(4, 2) = 7

because there are seven ways to partition {1, 2, 3, 4} into two sets:
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� {1} ∪ {2, 3, 4}

� {2} ∪ {1, 3, 4}

� {3} ∪ {1, 2, 4}

� {4} ∪ {1, 2, 3}

� {1, 2} ∪ {3, 4}

� {1, 3} ∪ {2, 4}

� {1, 4} ∪ {2, 3}

Partitioning into u subsets corresponds to putting balls in u urns. Requiring

the subsets to be non-empty corresponds to requiring each urn to have at least

one ball. Unordered subsets correspond to unlabeled urns. Therefore there are

S(b, u) possibilities.

There is no convenient formula for Stirling numbers, but they may be com-

puted via the recurrence relationship

S(n, k) = k S(n− 1, k) + S(n− 1, k− 1).

7 Labeled balls, labeled urns, ≥ 1 (ll+)

See the development of (lu+). Assume �rst that the urns are not labeled. Then

there are S(b, u) possibilities. But since the urns can be permuted u! ways

among themselves, labeling the urns multiplies the number of possibilities by

u!.
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8 Labeled balls, unlabeled urns, unrestricted (lu*)

By (lu+) there are S(b, u) ways to distribute the balls into u subsets with at

least one ball in each subset. If we allow the number of subsets to vary from 1

to u, then the total number of possibilities is the sum of over each size:

S(b, 1) + S(b, 2) + · · ·+ S(b, u).

9 Labeled balls, unlabeled urns, ≤ 1 (lu?)

If there are more balls than urns, there is no way to partition the balls into

the urns with no more than one ball per urn. If the number of balls is less

than or equal to the number of urns, there is one solution: put one ball in

each urn. Since the urns are unlabeled, one cannot distinguish any di�erence

between di�erent ways of doing this. Therefore the number of ways to distribute

b (unlabeled) balls into u unlabeled urns with no more than one ball in each

urn is [b ≤ u], i.e. 1 if b ≤ u and 0 otherwise.

10 Unlabeled balls, unlabeled urns, ≤ 1 (uu?)

The argument in (lu?) holds here as well: if the urns are not labeled, it doesn't

matter that the balls are labeled. If ball 1 is in one unlabeled urn and ball 2 is

in another unlabeled urn, how could I tell if I switched the two balls?

11 Unlabeled balls, unlabeled urns, ≥ 1 (uu+)

pk(n) is de�ned as the number of partitions of n into k parts, i.e. the number

of distinct ways to write n as the sum of k positive integers. The order of the
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summands does not matter; equivalently one can require that the summands

be arranged in non-decreasing order.

Partitioning b non-distinct balls into u non-distinct urns corresponds to

partitioning b into u summands. Requiring at least one ball in each urn corre-

sponds to requiring the summands to be positive. Therefore b unlabeled balls

can be distributed into u unlabeled urns in pu(b) ways.

There is no convenient formula for the numbers pk(n), but they can be

computed via the recurrence relation

pk(n) = pk−1(n− 1) + pk(n− k).

12 Unlabeled balls, unlabeled urns, unrestricted

(uu*)

Without the requirement of at least one ball per urn, the number of non-empty

urns can be any number between 1 and u inclusive. Thus, using (uu+), the

number of ways to distribute b unlabeled balls into u unlabeled urns is

p1(b) + p2(b) + · · ·+ pu(b).
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