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Abstract

The Chebyshev polynomials are both elegant and useful. This note
summarizes some of their elementary properties with brief proofs.

1 Cosines

We begin with the following identity for cosines.

cos((n + 1)θ) = 2 cos(θ) cos(nθ)− cos((n− 1)θ) (1)

This may be proven by applying the identity

cos(α + β) = cos α cos β − sin α sin β

with α = nθ and with β = θ and β = −θ, adding equations, and rear-
ranging terms.

Next, we claim that for each non-negative integer n, there exist integers
ci such that

cos nθ =

n∑
i=0

ci cosi(θ) (2)

The claim is clearly true for n = 0 or n = 1. We use induction and
equation (1) to establish the claim in general.

2 Chebyshev polynomials

2.1 Definition

Equation (2) says that cos(nθ) is a polynomial in cos θ. For fixed n, we
define the nth Chebyschev polynomial to be this polynomial, i.e.

cos(nθ) = Tn(cos θ). (3)

By letting x = cos θ, this shows

Tn(x) = cos(n arccos(x)) (4)
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for x in [−1, 1].
One interpretation of equation (4) is the following quote from Forman

S. Acton’s book Numerical Methods that Work:

[Chebyschev polynomials] are actually cosine curves with a
somewhat disturbed horizontal scale, but the vertical scale has
not been touched.

2.2 Maximum values

Several properties are immediate from equation (4). For one,

max
−1≤x≤1

Tn(x) = 1. (5)

Clearly the maximum is no more than 1 since for −1 ≤ x ≤ 1 T (x) is
defined as the cosine of an argument. In fact equality holds since the
maximum is attained at x = cos(kπ/n), for k = 1 . . . n.

2.3 Composition

We have the following formula for composing Chebychev polynomials

Tm(Tn(x)) = Tmn(x) (6)

since
cos(m arccos(cos(n arccos(x)))) = cos(mn arccos(x)).

2.4 Zeros

From equation (4) we can determine that for k = 1, 2, . . . , n, the xn defined
by

xk = cos

(
(2k − 1)π

2n

)
. (7)

are zeros of Tn. Since Tn is an nth degree polynomial these must be all
the zeros. In particular, all the roots of Tn are real and lie in the interval
[−1, 1].

2.5 Recurrence relation

The recurrence relation for cosines, equation (1), leads directly to the
Chebyschev recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x). (8)

It is clear that T0(x) = 1 and T1(x) = x. The other Tn’s can be found
from equation (8). It also follows from equation (8) that for n ≥ 1

Tn(x) = 2n−1xn +O(xn−1). (9)
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3 Differential Equation

One can show that
Tn(−x) = (−1)nTn(x) (10)

or in other words, the even degree Chebyschev polynomials are even func-
tions and the odd degree Chebyschev polynomials are odd functions. This
follows immediately from equation (8) and induction.

One can show that Tn satisfies the following differential equation for
n ≥ 1.

(1− x2)Tn
′′(x)− xTn

′(x) + n2Tn(x) = 0 (11)

If we solve equation (11) by the power series method, we assume a
solution of the form y =

∑n

k=0
tkxk and find that the coefficients tk must

satisfy the recurrence relation

(n2 − k2)tk + (k + 1)(k + 2)tk+2 = 0 (12)

Since we know tn = 2n−1, we may work our way backward to find the
other tk’s. We arrive at the formula

tn−2m = (−1)m2n−2m−1 n

n−m

(
n−m

m

)
(13)

for m = 0, 1, . . . bn/2c.

4 Extremal Properties

A monic polynomial is a polynomial whose leading coefficient is 1. In
approximation theory, it is useful to identify the nth degree monic poly-
nomial with the smallest uniform norm on [−1, 1], which turns out to be
21−nTn.

To prove this statement, let T (x) = 21−nTn and let Pn(x) be an nth
degree monic polynomial. Assume |Pn(x)| < 1 on [−1, 1]. Let Pn−1 =
Pn(x) − T (x). Since the xn terms cancel out, Pn−1 is a polynomial of
degree no more than n − 1. Since T alternates n + 1 times between the
values 1 and −1, Pn−1 changes must have at least n zeros, an impossibility
for an n− 1 degree polynomial.

5 Orthogonality

The integral ∫ π

0

cos(mθ) cos(nθ) dθ

are zero unless m = n. If m = n = 0 the integral is π, else the integral is
π/2.

The change of variables x = cos θ shows∫ π

0

cos(mθ) cos(nθ) dθ =

∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
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and thus the Chebyschev polynomials are orthogonal over [−1, 1] with
respect to the weight (1−x2)−1/2. Further, the sequence 1

π
T0,

2
π
T1,

2
π
T2,

2
π
T3 . . . is an orthonormal system.

The Chebyschev polynomials also satisfy a discrete orthogonality con-
dition, which, not surprisingly, follows directly from the analogous condi-
tion for cosines. Let xj be the roots of TN . Then the sum

N∑
k=1

T (mxk) T (nxk)

is zero if m 6= n, N if n = m = 0, and N/2 otherwise.

6 Generating Function

The generating function for Chebyschev polynomials is given as follows

1− tx

1− 2tx + t2
=

∞∑
n=0

Tn(x)tn. (14)

The proof consists of letting x = cos θ and taking the real part of both
sides of the geometric series

1

1− teiθ
=

∞∑
n=0

(teiθ)n.
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