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Throughout these notes, X and Y will be Banach spaces. L(X,Y ) will
denote the continuous linear operators from X to Y .

The derivative of a path u : (0, 1)→ X is given by

u′(t) = lim
h→0

u(t+ h)− u(t)

h
.

Suppose x, h ∈ X and let U be an open neighborhood of x. Let F : U → Y
and suppose the function ϕ : λ 7→ F (x+λh) is differentiable at 0. Then ϕ′(0) is
called the Gâteaux variation of F at x in the direction h, denoted δF (x;h);
the Gâteaux variation is a generalization of the idea of a directional derivative.

If there exists an operator A ∈ L(X,Y ) such that

δF (x;h) = Ah

then A is called the Gâteaux derivative of F at x, denoted DF (x).
If the stronger condition

lim
‖h‖→0

‖F (x+ h)− F (x)−Ah‖
‖h‖

= 0

holds then DF (x) is called the Fréchet derivative of F at x. The Fréchet
derivative is the closer analog of the derivative of calculus.

If the Gâteaux derivative of F exists and is continuous at x, then F is Fréchet
differentiable at x.

Mean Value Theorem: Let [x1, x2] denote the line segment joining two points
x1, x2 in an open set U ⊆ X. If F is Gâteaux differentiable in U , then

‖F (x1)− F (x2)‖ ≤ ‖x1 − x2‖ sup
x∈[x1,x2]

‖DF (x)‖.

Proof outline: Define ϕ(t) = F ((1 − t)x1 + tx2). By Hahn-Banach there
exists a y∗ ∈ Y ∗ of unit norm such that

y∗(ϕ(0)− ϕ(1)) = ‖ϕ(0)− ϕ(1)‖.

Apply the ordinary mean value theorem to y∗ϕ.
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Suppose X = X1⊕· · ·⊕Xm. Then one can define partial Fréchet deriva-
tivesDjF (x1 . . . xm) by analogy with partial derivatives from ordinary calculus.
If h = (h1, . . . hm) and all the partial Fréchet derivatives exist and are continuous
at x then

DF (x)h =

m∑
j=1

DjF (x)hj .

Chain Rule: If F : X → Y and G : Y → Z are Fréchet differentiable then
G ◦ F is Fréchet differentiable and

D(G ◦ F )(x) = DG(F (x))DF (x).

Product Rule: Let X = X1 ⊕ · · ·Xn and Y = Y1 ⊕ · · ·Yn. Suppose we are
given a product on Y , i.e., a continuous n-linear function from Y to a space
Z. Let Fi : Xi → Yi be Fréchet differentiable for 1 ≤ i ≤ n. Then the map
F : X → Y given by

F (x) = P (F1(x1), . . . , Fn(xn))

is Fréchet differentiable and its derivative is given by

DF (x)h =

n∑
i=1

P (F (x1), . . . , Fi−1(xi−1), DFi(xi)h, Fi+1(xi+1), . . . , Fn(xn)).

Define Ln(X,Y ) to be the space of continuous n-linear maps from X⊕· · ·⊕X
(n copies) to Y . This space is a Banach space under the norm

‖F‖ = sup
‖xi‖≤1, i=1...n

‖F (x1, . . . , xn)‖.

Ln(X,Y ) is isomorphic to L(x,Ln−1(X,Y )).
If F : X → Y is n times Fréchet differentiable, then DF : X → L(X,Y )

and under the above identification, DnF : X → Ln(X,Y ). For each x ∈ X,
DnF (x) is a symmetric n-linear map.

We define Cn(X,Y ) as might be expected: the set of maps whose first n
Fréchet derivatives exist and are continuous.

Inverse Function Theorem: Suppose F ∈ C1(X,Y ) and that for some x0 ∈
X, DF (x0) is invertible. Then there exists a neighborhood of y0 ≡ F (x0) on
which F is invertible and

D(F−1)(y0) = (DF (x0))−1.

In other words, the best linear approximation to the inverse function is the
inverse of the best linear approximation to the function. If X = Y = IR,

dx

dy
=

(
dy

dx

)−1
.
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Implicit Function Theorem: Let F ∈ C1(X ⊕ Y, Z) and suppose that the
partial Fréchet derivative D2F (x0, y0) ∈ L(Y,Z) is invertible for some (x0, y0).
Then there exists a neighborhood U of x0, a neighborhood V of F (x0, y0), and
a unique map G ∈ C1(U × V, Y ) such that

F (x,G(x, z)) = z.

In other words, for each z ∈ V , the relation F (x, y) = z implicitly defines y as
a C1 function of x for x’s in some neighborhood of x0 and the dependence on z
is also C1.

The implicit function theorem follows from applying the inverse function
theorem to G(x, y) : (x, y) 7→ (x, F (x, y)).

Lagrange Multipliers: Let U be an open set of a Hilbert space H. Let an
objective function F0 and and constraint functions F1, . . . , Fn be in C1(U, IR).
Define

M ≡ ∩ni=1F
−1
i (0).

Then if the restriction of F to M has a local maximum at x0 ∈ M , then there
exist constants λ0 . . . λn, not all zero, such that

n∑
i=0

λiDFi(x0) = 0.

In the case n = 1 and X = IRm, an intuitive proof can be given as follows.
Consider the manifold F−11 (0) as stationary and consider F−10 (y) for y bigger
that the maximum of F0 on F−11 (0). Gradually decrease y until the two level
sets are first tangent. At that point, the gradients of F0 and F1 must be parallel.
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