Differentiation in Banach spaces

John D. Cook

May 24, 1994

Throughout these notes, X and Y will be Banach spaces. $\mathcal{L}(X, Y)$ will denote the continuous linear operators from X to Y.

The derivative of a path $u:(0,1) \rightarrow X$ is given by

$$
u^{\prime}(t)=\lim _{h \rightarrow 0} \frac{u(t+h)-u(t)}{h}
$$

Suppose $x, h \in X$ and let U be an open neighborhood of x. Let $F: U \rightarrow Y$ and suppose the function $\varphi: \lambda \mapsto F(x+\lambda h)$ is differentiable at 0 . Then $\varphi^{\prime}(0)$ is called the Gâteaux variation of F at x in the direction h, denoted $\delta F(x ; h)$; the Gâteaux variation is a generalization of the idea of a directional derivative.

If there exists an operator $A \in \mathcal{L}(X, Y)$ such that

$$
\delta F(x ; h)=A h
$$

then A is called the Gâteaux derivative of F at x, denoted $D F(x)$.
If the stronger condition

$$
\lim _{\|h\| \rightarrow 0} \frac{\|F(x+h)-F(x)-A h\|}{\|h\|}=0
$$

holds then $D F(x)$ is called the Fréchet derivative of F at x. The Fréchet derivative is the closer analog of the derivative of calculus.

If the Gâteaux derivative of F exists and is continuous at x, then F is Fréchet differentiable at x.

Mean Value Theorem: Let $\left[x_{1}, x_{2}\right]$ denote the line segment joining two points x_{1}, x_{2} in an open set $U \subseteq X$. If F is Gâteaux differentiable in U, then

$$
\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\| \leq\left\|x_{1}-x_{2}\right\| \sup _{x \in\left[x_{1}, x_{2}\right]}\|D F(x)\|
$$

Proof outline: Define $\varphi(t)=F\left((1-t) x_{1}+t x_{2}\right)$. By Hahn-Banach there exists a $y^{*} \in Y^{*}$ of unit norm such that

$$
y^{*}(\varphi(0)-\varphi(1))=\|\varphi(0)-\varphi(1)\| .
$$

Apply the ordinary mean value theorem to $y^{*} \varphi$.

Suppose $X=X_{1} \oplus \cdots \oplus X_{m}$. Then one can define partial Fréchet derivatives $D_{j} F\left(x_{1} \ldots x_{m}\right)$ by analogy with partial derivatives from ordinary calculus. If $h=\left(h_{1}, \ldots h_{m}\right)$ and all the partial Fréchet derivatives exist and are continuous at x then

$$
D F(x) h=\sum_{j=1}^{m} D_{j} F(x) h_{j} .
$$

Chain Rule: If $F: X \rightarrow Y$ and $G: Y \rightarrow Z$ are Fréchet differentiable then $G \circ F$ is Fréchet differentiable and

$$
D(G \circ F)(x)=D G(F(x)) D F(x)
$$

Product Rule: Let $X=X_{1} \oplus \cdots X_{n}$ and $Y=Y_{1} \oplus \cdots Y_{n}$. Suppose we are given a product on Y, i.e., a continuous n-linear function from Y to a space Z. Let $F_{i}: X_{i} \rightarrow Y_{i}$ be Fréchet differentiable for $1 \leq i \leq n$. Then the map $F: X \rightarrow Y$ given by

$$
F(x)=P\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right)
$$

is Fréchet differentiable and its derivative is given by

$$
D F(x) h=\sum_{i=1}^{n} P\left(F\left(x_{1}\right), \ldots, F_{i-1}\left(x_{i-1}\right), D F_{i}\left(x_{i}\right) h, F_{i+1}\left(x_{i+1}\right), \ldots, F_{n}\left(x_{n}\right)\right)
$$

Define $\mathcal{L}^{n}(X, Y)$ to be the space of continuous n-linear maps from $X \oplus \cdots \oplus X$ (n copies) to Y. This space is a Banach space under the norm

$$
\|F\|=\sup _{\left\|x_{i}\right\| \leq 1, i=1 \ldots n}\left\|F\left(x_{1}, \ldots, x_{n}\right)\right\|
$$

$\mathcal{L}^{n}(X, Y)$ is isomorphic to $\mathcal{L}\left(x, \mathcal{L}^{n-1}(X, Y)\right)$.
If $F: X \rightarrow Y$ is n times Fréchet differentiable, then $D F: X \rightarrow \mathcal{L}(X, Y)$ and under the above identification, $D^{n} F: X \rightarrow \mathcal{L}^{n}(X, Y)$. For each $x \in X$, $D^{n} F(x)$ is a symmetric n-linear map.

We define $C^{n}(X, Y)$ as might be expected: the set of maps whose first n Fréchet derivatives exist and are continuous.

Inverse Function Theorem: Suppose $F \in C^{1}(X, Y)$ and that for some $x_{0} \in$ $X, D F\left(x_{0}\right)$ is invertible. Then there exists a neighborhood of $y_{0} \equiv F\left(x_{0}\right)$ on which F is invertible and

$$
D\left(F^{-1}\right)\left(y_{0}\right)=\left(D F\left(x_{0}\right)\right)^{-1}
$$

In other words, the best linear approximation to the inverse function is the inverse of the best linear approximation to the function. If $X=Y=\mathbb{R}$,

$$
\frac{d x}{d y}=\left(\frac{d y}{d x}\right)^{-1}
$$

Implicit Function Theorem: Let $F \in C^{1}(X \oplus Y, Z)$ and suppose that the partial Fréchet derivative $D_{2} F\left(x_{0}, y_{0}\right) \in \mathcal{L}(Y, Z)$ is invertible for some $\left(x_{0}, y_{0}\right)$. Then there exists a neighborhood U of x_{0}, a neighborhood V of $F\left(x_{0}, y_{0}\right)$, and a unique map $G \in C^{1}(U \times V, Y)$ such that

$$
F(x, G(x, z))=z
$$

In other words, for each $z \in V$, the relation $F(x, y)=z$ implicitly defines y as a C^{1} function of x for x 's in some neighborhood of x_{0} and the dependence on z is also C^{1}.

The implicit function theorem follows from applying the inverse function theorem to $G(x, y):(x, y) \mapsto(x, F(x, y))$.

Lagrange Multipliers: Let U be an open set of a Hilbert space H. Let an objective function F_{0} and and constraint functions F_{1}, \ldots, F_{n} be in $C^{1}(U, \mathbb{R})$. Define

$$
M \equiv \cap_{i=1}^{n} F_{i}^{-1}(0)
$$

Then if the restriction of F to M has a local maximum at $x_{0} \in M$, then there exist constants $\lambda_{0} \ldots \lambda_{n}$, not all zero, such that

$$
\sum_{i=0}^{n} \lambda_{i} D F_{i}\left(x_{0}\right)=0
$$

In the case $n=1$ and $X=\mathbb{R}^{m}$, an intuitive proof can be given as follows. Consider the manifold $F_{1}^{-1}(0)$ as stationary and consider $F_{0}^{-1}(y)$ for y bigger that the maximum of F_{0} on $F_{1}^{-1}(0)$. Gradually decrease y until the two level sets are first tangent. At that point, the gradients of F_{0} and F_{1} must be parallel.

