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1. Introduction.

Various models of mass transport and diffusion through heterogeneous media lead to sys-

tems of partial differential equations which share a rather general structure. Among the

most successful of these are the dual porosity models, and these vary considerably in com-

plexity. The simplest of these are the parallel flow models consisting of two independent

flow equations coupled by an exchange proportional to difference in pressures in the two

components. These include the parabolic system

∂

∂t
(u1)− ~∇ ·A(~∇u1) + a0(u1) +

1
ε

(u1 − u2) = f1(1.1.a)

∂

∂t
(u2)− ~∇ ·B(~∇u2) + b0(u1) +

1
ε

(u2 − u1) = f2 .(1.1.b)

and the first-order kinetic models, e.g., the above with B = 0. In order to include the

geometric effects of an intricate interface between the components, one uses distributed

microstructure models. Here a single macroscopic flow equation is coupled to a continuum

of flow equations, one at each point in space representing adsorption and internal flow

or reaction in a corresponding adsorption site. An example is the following system. The

macroscopic flow is given by

(1.2.a)
∂

∂t

(
u(x, t)

)
− ~∇ ·A(x, ~∇u) + q(x, t) = f(x, t) , x ∈ Ω ,
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where q(x, t) is the exchange term representing the flow into the cell Ωx located at x. The

flow within the local cell Ωx is described in the micro-scale variable y by

(1.2.b)
∂

∂t

(
U(x, y, t)

)
− ~∇y ·B(x, y, ~∇yU) = F (x, y, t) , y ∈ Ωx .

Because of the smallness of the cells, the global pressure is assumed to be well approximated

by the “constant” value u(x, t) at every point of the cell boundary, so the effect of the

fissures on the cell pressure is given by the interface condition

(1.2.c) B(x, s, ~∇yU) · ~νx +
1
ε

(U − u) = 0 , s ∈ Γx ,

where ~νx is the unit outward normal on the cell boundary Γx. We shall show below that

when ε → 0, this converges to the “matched” boundary condition, u(x, t) = U(x, s, t) on

Γx. Finally, the amount of fluid flux across the interface scaled by the cell size determines

the remaining term in (1.2.a) by

(1.2.d) q(x, t) =
1
|Ωx|

∫
Γx

B(x, s, ~∇yU) · ν ds ,

where |Ωx| denotes the Lebesgue measure of Ωx, and this contributes to the cell storage.

We discuss here an abstract system of evolution equations in Hilbert space in the form

(1.3)

du

dt
+Au+

1
ε
α′C(αu− βU) 3 f in H

dU

dt
+ BU +

1
ε
β′C(βU − αu) = F in H

which was motivated by the preceding flow problems. Even for these examples our existence

and convergence results are new. This is the first treatment of such problems which includes

a general m-accretive operator ; the second component is a monotone operator (or system

of such operators) from a Banach space to its dual. The convergence to the system with

matched boundary conditions as ε → 0 was proved previously for a nonlinear case only

in [9] for a similar problem. The abstract setting is closely related to classical results on

the perturbation of m-accretive operators. We also mention below a rather broad variety

of additional examples to suggest additional applications of the abstract system and to

illustrate the limitations and possible extensions of our results.
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Our plan is as follows. In Section 2 we develop our main results for the abstract

evolution system (1.3). The well-posedness results for the system follow by showing that

the corresponding stationary problem describes the generator of a semigroup of nonlinear

contractions in H × H. With an additional assumption on the range of the operator α,

we show that the solutions of (1.3) converge to the solution of a corresponding limiting

problem; this is the “matched model” for the flow problems above. Thereafter we present

in the successive following sections a collection of examples to which our preceding results

directly apply. These include various dual porosity models and examples to illustrate the

appropriateness of our additional hypothesis to ensure the convergence to the matched

model.

2. The System.

Let H and H be Hilbert spaces, each of which is to be identified with its dual. Suppose

V and T are Banach spaces with duals denoted respectively by V ′ and T ′, and let V be

dense and continuously imbedded in H so we have V ⊂ H ⊂ V ′. We assume

A1 • A is m-accretive on H,

A2 • B : V → V ′ is continuous, monotone, and bounded-coercive:

{〈BΦ,Φ〉+ |Φ|2H} bounded implies that ‖Φ‖V and ‖BΦ‖V′ are bounded,

and

A3 • C ∈  L(T , T ′) is symmetric and monotone.

It follows that 〈C·, ·〉 is a semi-scalar-product on T ; denote the kernel of C in T by ker(C),

the annihilator of ker(C) in T ′ by ker(C)⊥, and the completion of T with this semi-

scalar-product by T . The continuous extension of C will be denoted likewise; it gives the

semi-scalar-product (ϕ,ψ)T = Cϕ(ψ), and C maps T onto its dual T ′ ↪→ T ′. Finally, we

assume given the pair of operators

A4 • α ∈  L(H,T ), β ∈  L(V, T ), with β a surjection onto T .

The corresponding continuous duals are denoted by α′ : T ′ → H and β′ : T ′ → V ′; note

that β′ is one-to-one.
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We shall consider the stationary system

(2.1.a) uε + aε +
1
ε
α′C(αuε − βUε) = f , aε ∈ A(uε) in H

(2.1.b) Uε + B(Uε) +
1
ε
β′C(βUε − αuε) = F in H

with f,F given as above and ε > 0. This system will be shown to be well-posed and to

approximate

(2.2.a) u+ a+ α′τ = f , a ∈ A(u) in H ,

(2.2.b) U + B(U)− β′τ = F in H ,

(2.2.c) αu− βU ∈ ker(C) , τ ∈ ker(C)⊥ in T ′

as ε→ 0 when, in addition, we have

A5 • α ∈  L(H, T ) .

This last assumption is necessary in order for (2.2.a) to be meaningful.

We begin by considering the system (2.1). Let [fj ,Fj ] ∈ H×H for j = 1, 2 and denote

a corresponding pair of solutions by [uj , Uj ] ∈ H × V. By subtracting the corresponding

components of the system (2.1) and applying them to the respective components of the

difference of the solutions, we obtain

|u1−u2|2H +
1
ε
Cα(u1−u2)

(
α(u1−u2)

)
≤ 1
ε
Cβ(U1−U2)

(
α(u1−u2)

)
+ |f1−f2|H |u1−u2|H

|U1−U2|2H+
1
ε
Cβ(U1−U2)

(
β(U1−U2)

)
≤ 1
ε
Cα(u1−u2)

(
β(U1−U2)

)
+|F1−F2|H|U1−U2|H

since A is accretive and B is monotone. By adding these estimates and applying Cauchy-

Schwartz, there follows the fundamental estimate

|u1 − u2|2H + |U1 − U2|2H ≤ |f1 − f2|2H + |F1 −F2|2H .

This establishes the uniqueness of a solution and, moreover, that the system (2.1) deter-

mines an accretive operator in H × H. The same holds for the system (2.2), since the

corresponding calculation leads to the term τ(α(u1− u2)− β(U1−U2)) which vanishes by

(2.2.c).

The following surjectivity result shows that these systems lead to m-accretive opera-

tors on H ×H.
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Theorem 1. Let the spaces and operators be given as above with A1, A2, A3, A4. Then

for every ε > 0 there exists a unique solution [uε, Uε] of (2.1).

If in addition A5 holds, then there exists a unique solution [u, U ] of (2.2) and we have

strong convergence uε → u in H, Uε → U in H as ε→ 0.

Proof. Let ω ∈ T ′ and consider the equation

u+A(u) +
1
ε
α′(Cαu− ω) 3 f .

For a pair ωj , j = 1, 2, and corresponding solutions uj , we obtain as before

|u1 − u2|2H +
1
ε
|α(u1 − u2)|2T ≤

1
ε

(ω1 − ω2)
(
α(u1 − u2)

)
,

and this implies

2ε|u1 − u2|2H + |α(u1 − u2)|2T ≤ |ω1 − ω2|2T ′ .

By A4 there is a constant c > 0 for which |α(u)|T ≤ c|u|H , u ∈ H, so we have(
1 +

2ε
c2

)1/2

|Cα(u1 − u2)|T ′ ≤ |ω1 − ω2|T ′ , ω1, ω2 ∈ T ′ .

This shows that the mapping ω 7→ Cαu is a strict contraction on the Hilbert space T ′.

Proceeding similarly from the equation

U + B(U) +
1
ε
β′(CβU − ω) = F , ω ∈ T ′ ,

we obtain the estimate

|Cβ(U1 − U2)|T ′ ≤ |ω1 − ω2|T ′ , ω1, ω2 ∈ T ′

so ω 7→ CβU is a contraction. But a solution of (2.1) corresponds to a fixed-point of

the composition of these two maps, and T ′ is a Hilbert space, so we have established the

existence of a solution of (2.1).

Remark. Notice the asymmetry between ω 7→ Cαu and ω 7→ CβU. The former is a strict

contraction because α is continuous on H; the latter is only a contraction because β is not

continuous on H but only on V ⊂ H.

The family of solutions [uε, Uε] of (2.1) with ε > 0 satisfies the a-priori estimate

|uε|2H + |Uε|2H2 + (aε, uε)H +BUε(Uε) +
1
ε
|αuε− βUε|2T = (f, uε)H + (F , Uε)H , ε > 0 .
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It follows that |uε|2H and |Uε|2H+BUε(Uε) are bounded so A2 shows that |Uε|V and |BUε|V′

are bounded. Then from (2.1.b) it follows that { 1
εC(αuε−βUε)(βΦ)} is bounded for each

Φ ∈ V, and thus by A4 that { 1
εC(αuε − βUε)} is weakly, hence, strongly bounded in T ′.

Finally, from A5 and (2.1.a) it is clear that |aε|H is bounded. These remarks imply that

there is a subsequence, which we denote momentarily by the same {uε, Uε}, for which

we have weak convergence uε ⇀ u and aε ⇀ a in H, Uε ⇀ U in V and BUε ⇀ b in

V ′, and 1
εC(αuε − βUε) ⇀ τ in T ′. It follows by weak continuity of α, β and C that

αu − βU ∈ ker(C) and by symmetry of C that τ(ψ) = lim 1
εCψ(αuε − βUε) = 0 for

ψ ∈ ker(C), so (2.2.c) holds.

In order to establish (2.2.a) and (2.2.b), it suffices to show a ∈ A(u) and b = B(U).

To this end we show

(2.3) lim sup
ε→0

(
(aε, uε − u)H + BUε(Uε − U)

)
≤ 0 .

By (2.1) this is equivalent to

lim sup
ε→0

(
|u|2H − |uε|2H + |U |2H − |Uε|2H −

1
ε
C(αuε − βUε)(αuε − βUε − αu+ βU)

)
≤ 0 .

Since C is monotone and (2.2.c) holds, we need only verify the above without the term

with C, and this is equivalent to

lim inf
ε→0

(|uε|2H + |Uε|2H) ≥ |u|2H + |U |H2 .

But this is immediate from weak lower-semicontinuity of the norms, so (2.3) is proven.

Next, for each [ϕ, g] ∈ A and Φ ∈ V we have

(aε − g, uε − ϕ)H + (BUε −BΦ)(Uε − Φ) ≥ 0 ,

so using (2.3) to take the lim sup yields

(a− g, u− ϕ)H + (b− BΦ)(U − Φ) ≥ 0 .

That is, we have

(a− g, u− ϕ)H ≥ 0 , [ϕ, g] ∈ A ,
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and

(b− BΦ)(U − Φ) ≥ 0 , Φ ∈ V .

Since A is maximal accretive by A1 and B is maximal monotone by A2, we have a ∈ A(u)

and b = BU as desired, so (2.2) is established. Also there is at most one solution of (2.2),

so the original sequence (and not just a special subsequence) converges weakly as indicated

above.

Finally, we verify that the convergence of [uε, Uε] in H×H is strong . Subtract (2.2.a)

from (2.1.a) and apply to uε − u, subtract (2.2.b) from (2.1.b) and apply to Uε − U ; the

sum of these operations gives

|uε − u|2H + |Uε − U |2H +
(

1
ε
C(αuε − βUε)− τ

)(
α(uε − u)− β(Uε − U)

)
= |uε − u|2H + |Uε − U |2H +

1
ε
|αuε − βUε|2T − τ

(
α(uε − u)− β(Uε − U)

)
≤ 0 .

The last term converges to zero by A5, so we obtain the desired strong convergence.

In some of our applications, the operator B : V → V ′ is the realization of a family

of elliptic boundary-value problems and β is a trace mapping onto boundary-values. To

describe this situation abstractly we assume, in addition, that

A6 • β : V → T is a strict homomorphism onto T and the kernel, V0 ≡ kerβ, is

dense in H.

Then we have the formal part B0 : V → V ′0 defined by restriction, B0Φ = BΦ|V0 , Φ ∈ V,

and a natural domain D ≡ {Φ ∈ V : B0Φ ∈ H} for the Green’s operator ∂B : D → T ′ for

which

(2.4) BΦ = B0Φ + β′∂B(Φ) , Φ ∈ D .

This is an abstract Green’s formula which displays the operator B as a formal partial

differential equation plus a natural boundary condition. ¿From (2.4) it follows that (2.1.b)

and (2.2.b) have the respective equivalent forms

(2.1.b′) Uε +B0(Uε) = F in H ,

∂B(Uε) +
1
ε
C(βUε − αuε) = 0 in T ′ ,
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and

(2.2.b′) U +B0(U) = F in H

∂B(U) = τ in T ′ .

In both cases, (2.1.a) and (2.2.a) are equivalent to

(2.5) u+ a+ α′(∂BU) = f , a ∈ A(u) in H ,

Thus, the dual or natural boundary-values for U are a source-sink term in the equation

for u.

The preceding results combine directly with the generation theory of semigroups of

operators in Hilbert space to give the following [4], [5].

Theorem 2. Let the spaces and operators be given as above with A1, A2, A3, A4. Let

f : [0, T ] → H and F : [0, T ] → H be absolutely continuous and ε > 0, u0 ∈ dom(A),

U0 ∈ V be given with B(U0) + 1
εβ
′C(βU0 − αu0) ∈ H. Then there exists a unique pair of

Lipschitz continuous functions uε : [0, T ]→ H, Uε : [0, T ]→ H which satisfy

duε

dt
(t) + aε(t) +

1
ε
α′C

(
αuε(t)− βUε(t)

)
= f(t) , aε(t) ∈ A

(
uε(t)

)
,(2.6.a)

dUε

dt
(t) + B

(
Uε(t)

)
+

1
ε
β′C

(
βUε(t)− αuε(t)

)
= F(t) , a.e. t ∈ [0, T ] ,(2.6.b)

and

(2.7) uε(0) = u0 , Uε(0) = U0 .

Assume in addition that A5 holds. Then there exists a unique pair of Lipschitz

continuous functions u : [0, T ]→ H, U : [0, T ]→ H which satisfy

du

dt
(t) + a(t) + α′(τ(t)) = f(t) , a(t) ∈ A(u(t)) ,(2.8.a)

dU

dt
(t) + B(U(t))− β′(τ(t)) = F(t) ,(2.8.b)

αu(t)βU(t) ∈ ker(C) , τ(t) ∈ ker(C)⊥ , a.e. t ∈ [0, T ] ,(2.8.c)
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(2.9) u(0) = u0 , U(0) = U0 ,

and we have strong convergence

uε → u in C[0, T ;H] , Uε → U in C[0, T ;H]

as ε→ 0.

3. A Diffusion-Convection Operator.

Let Ω be a bounded domain in Rn lying on one side of its smooth boundary, ∂Ω, with

unit outward normal ~ν. We shall construct an m-accretive operator, A, in L2(Ω) which

corresponds to a second-order divergence-form quasi-linear elliptic operator together with

linear first-order terms to model diffusive and convective transport. This provides a gen-

eralization of the special linear case in which Au = f is the realization in L2(Ω) of the

boundary-value problem

(3.1.a) −∆u− ~a2 · ~∇u = f in Ω ,

(3.1.b) u = 0 on Γ− ,
∂u

∂ν
+ ~a2 · ~νu = 0 on Γ+

of mixed type, where Γ− is a measurable subset of the boundary containing the inflow

boundary, {s ∈ ∂Ω : ~a2 · ~ν(s) < 0}, and Γ+ is its complement. This operator, or its

generalization below, will be used in Section 4 and could be applied in Section 5 as well. The

remainder of this Section consists of a precise but standard construction of a generalization

of (3.1), and it is otherwise not necessary for an understanding of the following examples.

Let H1(Ω) be the Hilbert space of (equivalence classes of) functions in L2(Ω) with

each generalized derivative Dju ∈ L2(Ω), 1 ≤ j ≤ n. The norm is given by

‖u‖H1(Ω) =

 n∑
j=0

‖Dju‖2L2

1/2

where D0 denotes the identity. Let γ : H1(Ω)→ L2(∂Ω) be the trace map onto boundary

values and denote its kernel by H1
0 (Ω). See [1] for information on these Sobolev spaces.

We let ~∇ = (D1, D2, . . . , Dn) denote the gradient operator; the dual divergence is ~∇· .
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We first construct a linear first-order convective operator, with constant coefficients for

simplicity. Thus, let ~a1,~a2 ∈ Rn be given and define Γ− = {s ∈ ∂Ω : (~a1 + ~a2) · ~ν(s) < 0},

V = {u ∈ H1(Ω) : γu = 0 a.e. on Γ−}, and A : V → V ′ by

Au(v) =
∫

Ω

(
(~a1 · ~∇u)v + u~a2 · ~∇v

)
dx , u, v ∈ V .

It follows easily that A is continuous and monotone; furthermore it can be written in the

form

Au(u) =
∫

Ω

(
(~a1 − ~a2) · ~∇u

)
v dx+

∫
Γ+

~a2 · ~ν γu γv ds

to display its parts on Ω and on Γ+ ≡ ∂Ω ∼ Γ−, respectively.

The principle part of our operator is the subgradient of a convex lower semicontinuous

function ϕ : V → R+ of the form

ϕ(u) =
n∑

j=0

∫
Ω

ϕj

(
Dju(x)

)
dx , u ∈ V ,

where each ϕj : R→ R+ is convex and continuous with ϕj(0) = 0 for 0 ≤ j ≤ n, and there

are constants c0 > 0 and C with

c0(s2 − 1) ≤ ϕj(s) ≤ C(s2 + 1) , s ∈ R , 0 ≤ j ≤ n .

Thus each term in ϕ is continuous on V and we can compute the subgradient ∂ϕ termwise

[9]. Finally, we obtain from [10] that the multi-valued operator I + ∂ϕ + A : V → V ′ is

onto.

Now we define A to be the restriction of ∂ϕ + A to H = L2(Ω), i.e., Au 3 f if

∂ϕ(u) 3 f − Au with f ∈ H, and this means there exist gj ∈ ∂ϕj(Dju) in L2(Ω) for

0 ≤ j ≤ n with
n∑

j=0

∫
Ω

gjDjv dx+Au(v) =
∫

Ω

fv dx , v ∈ V .

This is equivalent to the pair of equations

− ~∇ · ~g + g0 + (~a1 − ~a2) · ~∇u = f in L2(Ω) ,

~g · ~ν + ~a2 · ~ν γu = 0 in L2(Γ+) ,
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where ~g = (g1, g2, . . . , gn) and ~g ·~ν has the appropriate generalized meaning in H−1/2(Γ+),

the dual of the trace space [15], [12]. Thus, Au 3 f is equivalent to the boundary-value

problem

u ∈ H1(Ω) : −
n∑

j=1

Dj∂ϕj(Dju) + ∂ϕ0(u) + (~a1 − ~a2) · ~∇u 3 f in Ω ,(3.2.a)

u = 0 on Γ− ,
n∑

j=1

∂ϕj(Dju) · νj + ~a2 · ~νu 3 0 on Γ+ ,(3.2.b)

in the precise form stated above. The monotone graphs ∂ϕj permit nonlinear or even multi-

valued flux, and the vectors ~a1,~a2 give linear convection such as arises from gravitational

influence [2]. Note that the linear case (3.1) is obtained from

ϕj(s) = 1
2s

2 , 1 ≤ j ≤ n , ϕ0 = 0 , ~a1 = ~0 .

Many other realizations of nonlinear boundary-value problems as m-accretive operators

in L2(Ω) are given in [3], [4] and their references; one can add convective terms to these

examples by standard perturbation results.

4. Distributed Microstructure Models.

The example in this section is based on the work in [8]. We refer the reader to that paper

and to [7], [14], [13] for a more detailed exposition and proofs of the claims made here.

This example differs from the models above by permitting a far more general operator A.

In the microstructure model, a cell Ωx and a boundary value problem is specified at

each point x of a global region Ω. This development is made rigorous by the use of a

continuous direct sum of Hilbert spaces as described below.

Let Ω be a bounded open subset of Rn and let L2(Ω, L2(Rn)) be the space of (equiv-

alence classes of) Bochner square integrable functions from Ω into L2(Rn). Let Q be a

measurable subset of Ω×Rn and let Ωx be the x-section Ωx = {y ∈ Rn : (x, y) ∈ Q}. Iden-

tify L2(Q) as a subspace of L2(Ω × Rn) ∼= L2(Ω, L2(Rn)) and each L2(Ωx) as a subspace

of L2(Rn) by zero extension. Thus we can identify

L2(Q) ∼=
{
U ∈ L2

(
Ω, L2(Rn)

)
: U(x) ∈ L2(Ωx) , a.e. x ∈ Ω

}
.
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Denote the right side by H = L2(Ω, L2(Ωx)).

For each x ∈ Ω, let H1(Ωx) be the Sobolev space of functions in L2(Ωx) whose first

order (distributional) derivatives also lie in L2(Ωx). Let H1
0 (Ωx) be the closure of C∞0 in

H1(Ωx). We also define

V ≡
{
U ∈ L2

(
Ω, L2(Ωx)

)
: U(x) ∈ H1(Ωx) , a.e. x ∈ Ω

and
∫

Ω

‖U(x)‖2H1(Ωx) dx <∞
}
.

Let γx : H1(Ωx) → L2(Γx) be the trace maps from each cell to its boundary. It is well

known that the image of γx, H1/2(Γx), is dense in L2(Γx). Let T = L2(Ω, H1/2(Γx)) and

define β : V → T to be the distributed trace

β(U)(x, s) ≡ γx

(
U(x)

)
(s) ∀ x ∈ Ω , ∀ s ∈ Γx .

Clearly β satisfies A4 and A6.

In this example, C will be the identity on T = L2(Ω, L2(Γx)). It will be convenient to

weight the norm in the space T to include a scaling factor. Define a function w on Ω by

w(x) =
1
|Ωx|

.

For U ∈ L2(Ω, L2(Γx)), we define the norm of U as follows:

‖U‖2L2(Ω,L2(Γx)) ≡
∫

Ω

‖U‖2L2(Γx) w(x) dx .

We assume w is bounded away from 0 and is also bounded above so that the same elements

belong to L2(Ω, L2(Γx)) with this norm as with the standard norm (i.e., with w ≡ 1).

Let α : L2(Ω) → L2(Ω, L2(Γx)) be defined by constant extension, i.e., (αu)(x, s) =

u(x), x ∈ Ω, s ∈ Γx. Clearly α satisfies A4 and the stronger requirement A5.

We construct the operator B on L2(Ω, H1(Ωx)) as follows. Assume that we are given

a function B̂ : Q × Rn → Rn. Assume B̂ is measurable in its first two components

and continuous in the third. Finally, assume that there exist functions h1 ∈ L2(Q) and

h0 ∈ L1(Q) such that B̂ satisfies for almost every (x, y) ∈ Q and all ξ, η ∈ Rn:

|B̂(x, y, ξ)| ≤ c|ξ|+ h1(x, y) ,(4.1.a)

〈B̂(x, y, ξ)− B̂(x, y, η), ξ − η〉 ≥ 0 ,(4.1.b)

B̂(x, y, ξ) · ξ ≥ c0|ξ|2 − h0(x, y) .(4.1.c)
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For each x ∈ Ω define the operator Bx : H1(Ωx)→ H1(Ωx)′ by

Bxw(v) ≡
∫

Ωx

B̂
(
x, y, ~∇yw(y)

)
· ~∇yv(y) dy , w, v ∈ H1(Ωx) .

Define Bxw to be the restriction of Bxw to C∞0 (Ωx) so that

Bxw = −~∇y · B̂(x, ·, ~∇yw)

in the sense of distributions on Ωx for each w ∈ H1(Ωx). Define the corresponding dis-

tributed operator B : V → V ′ by

BU(Φ) ≡
∫

Ω

Bx

(
U(x)

)
Φ(x) dx , U,Φ ∈ L2

(
Ω, H1(Ωx)

)
.

It can be shown that B satisfies A2. The formal partial differential operator on Q is given

by (B0W )(x) = BxW (x) in V ′0 = L2(Ω, H−1(Ωx)) for each W ∈ V = L2(Ω, H1(Ωx)), and

the boundary operator is determined by (2.4) to be an extension of

∂B(βΦ) = B̂
(
x, y,∇yΦ(x, y)

)
· ~νx(y) , x ∈ Ω , y ∈ ∂Ωx ,

on smooth functions Φ in V, where ~νx is the unit outward normal on ∂Ωx.

Let A be the realization in L2(Ω) of the boundary-value problem (3.1). (Of course we

could take any m-accretive operator in L2(Ω), specifically the quasi-linear example given

by (3.2).) Then from Theorem 2 we obtain the existence and uniqueness of a solution to

the distributed microstructure system

∂uε

∂t
−∆uε − ~a2 · ~∇uε +

∫
∂Ωx

B̂(~∇yUε) · ~νx dy = f in Ω× [0, T ] ,(4.2.a)

uε = 0 on Γ− ,
∂uε

∂ν
+ ~a2 · ~νuε = 0 on Γ+ × [0, T ] ,(4.2.b)

∂Uε

∂t
− ~∇y · B̂(~∇yUε) = F in Q× [0, T ] ,(4.2.c)

B̂(~∇yUε) · ~νx +
1
ε

(γxUε − uε(x)) = 0 on Ω× ∂Ωx × [0, T ](4.2.d)

with initial conditions (2.7) for ε > 0 and data u0, U0, f,F . Also, as ε → 0 this solution

pair converges strongly to that of the matched microstructure system

∂u

∂t
−∆u− ~a2 · ~∇u+

∫
∂Ωx

B̂(~∇yU) · ~νx dy = f in Ω× [0, T ] ,(4.3.a)
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u = 0 on Γ− × [0, T ] ,
∂u

∂ν
+ ~a2 · ~νu = 0 on Γ+ × [0, T ] ,(4.3.b)

∂U

∂t
− ~∇y · B̂(~∇yU) = F in Q× [0, T ] ,(4.3.c)

γxU = u(x) on Ω× ∂Ωx × [0, T ](4.3.d)

with initial conditions (2.9). First order terms could similarly be added to (4.2.c) and

(4.3.c) as before.

5. Sums of m-accretive operators.

We give some examples in which the convergence result does not hold. Consider the special

case in which each of α, β and C is the identity, and β is the injection of V onto a dense

subset of H; then H = T = H, and (2.1) takes the form

uε +A(uε) +
1
ε

(uε − Uε) 3 f(5.1.a)

Uε + B(Uε) +
1
ε

(Uε − uε) = F(5.1.b)

in H ×H. The limiting case (2.2) as ε→ 0 is equivalent to the single equation

(5.2) 2u+A(u) + B(u) = f + F

in H, when A5 holds, and then it follows that the sum A+B is m-accretive on H. This is

well known since A5 implies in this situation that dom(B) = V = H; see Corollary 2.7 of

[5]. Without A5 or some such additional hypothesis, the sum will certainly not necessarily

be m-accretive, even in the very special case of a pair of linear symmetric regular-accretive

operators.

Example 5.1. Let A be the L2(Ω)-realization of the Dirichlet problem: A(u) = f in

L2(Ω) means

u ∈ H1
0 (Ω) :

∫
Ω

~∇u · ~∇ϕ =
∫

Ω

fϕ for all ϕ ∈ H1
0 (Ω) .

Let V = H1(Ω) and define B ∈  L(V,V ′) by

Bu(ϕ) =
∫

Ω

~∇u · ~∇ϕ , u, ϕ ∈ V ;
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then B(u) = f in L2(Ω) is the weak form of the Neumann problem,

−∆u = f in Ω ,
∂u

∂ν
= 0 on ∂Ω .

Thus Example 5.1 is the over-determined problem of finding a solution satisfying both

Dirichlet and Neumann boundary conditions.

Example 5.2. Let the spaces be given by T = V = H1
0 (Ω) and β be the identity. Assume

we are given B̂ : Ω× Rn → Rn which is measurable in the first component, continuous in

the second, and satisfies estimates of the form (4.1), but independent of y. Then define

B : V → V ′ by

(5.3) Bw(v) =
∫

Ω

B̂(x, ~∇w(x)) · ~∇v(x) dx , w, v ∈ V .

Here we choose a different pivot space H by which to identify functionals with func-

tions. Recall that −∆ is the Riesz isomorphism of the Hilbert space V ≡ H1
0 (Ω) with

scalar product (~∇u, ~∇v)L2(Ω) onto its dual, V ′ ≡ H−1(Ω). This dual is also a Hilbert

space, and the duality maps and scalar products are related by

g(ϕ) = (g,−∆ϕ)V ′ =
(
(−∆)−1g, ϕ

)
V
, g ∈ V ′ , ϕ ∈ V .

Let A0 be a maximal monotone graph in R × R and denote likewise the corresponding

m-accretive operator on L2(Ω): g ∈ A0(w) in L2(Ω) if and only if

g, w ∈ L2(Ω) and g(x) ∈ A0(w(x)) , a.e. x ∈ Ω .

Define A on H = V ′ = H−1(Ω) by f ∈ A(u) in V ′ if and only if there is a g ∈ A0(u) in

L2(Ω) with

(g, ϕ)L2(Ω) = g(ϕ) = (f, ϕ)V ′ , ϕ ∈ V .

¿From above we see that the realization in V ′ is given by f = −∆g with g ∈ V , and so

A = −∆ ◦ A0 is the indicated composition. (This is actually a subgradient operator [4].)

The coupling operator is chosen to be Cg(h) = (g, h)V ′ , so T = V ′, and we let α denote

the identity on V ′. The system (2.1) takes the form

uε ∈ L2(Ω) , uε −∆ ◦A0(uε) +
1
ε

(uε − Uε) = f in H−1(Ω)(5.4.a)

Uε ∈ H1(Ω) , Uε + B(Uε) +
1
ε

(Uε − uε) = F in H−1(Ω) ,(5.4.b)
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in which the first component is a semi-linear elliptic equation and the second is of quasi-

linear type. There is no common space on which both are accretive. The corresponding

evolution problem (2.6) has first component of porous-media type, and the second compo-

nent is a degenerate parabolic equation.

6. Evolution on the Boundary.

We present two examples of systems which contain an evolution equation on a boundary

or interface. Here convergence holds without the assumption A5.

Example 6.1. Let Ω be given as in Section 3; set V = H1(Ω) and define B : V → V ′

by (5.3). Let β : H1(Ω) → L2(∂Ω) be the trace γ with range T = H1/2(∂Ω) and kernel

H1
0 (Ω). Then A6 holds with H = L2(Ω), and we have the formal part of B on Ω

(6.1) B0(U) = −~∇ · B̂(·, ~∇U) ∈ H−1(Ω)

and boundary operator

(6.2) ∂Bw = B̂(·, ~∇w) · ~ν ∈ H−1/2(∂Ω)

determined by (2.4). Choose H = L2(∂Ω) and Cw(ϕ) = (w,ϕ)H on H1/2(∂Ω), so we have

T = H and C = α = identity.

Let A be any m-accretive operator on L2(∂Ω). Then (2.6) takes the form

∂uε

∂t
+A(uε) +

1
ε

(uε − βUε) 3 f , and(6.3.a)

∂B(Uε) +
1
ε

(βUε − uε) = 0 in L2(∂Ω) ,(6.3.b)

∂Uε

∂t
+B0(Uε) = F in L2(Ω) , 0 ≤ t ≤ T .(6.3.c)

Although A5 does not hold in this situation, one can show that the solution of (6.3) does

converge to that of the system (2.8); this take the form

∂

∂t
(βU) +A(βU) + ∂B(U) 3 f in L2(∂Ω) ,(6.4.a)

∂

∂t
(U) +B0(U) = F in L2(Ω) , 0 ≤ t ≤ T .(6.4.b)
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In typical applications to diffusion phenomena, (6.4.b) governs the diffusion in the region Ω

and ∂B(U) is the flux onto the boundary, ∂Ω, where the diffusion is governed by (6.4.a). The

operator A can be, for example, a (nonlinear) realization of the Laplace-Beltrami elliptic

operator in tangential coordinates. Similar problems arise from standard approximations

of flow in internal manifolds or cracks with very high permeability [6], [11].

Example 6.2. Let Ω and Ω0 be disjoint bounded domains in Rn, each lying on one side

of its smooth boundary, and let Γ− be a relatively open and connected subset of ∂Ω∩∂Ω0.

Denote the respective unit outward normals by ~ν and ~ν0. Set V = {Φ ∈ H1(Ω) : γΦ = 0

a.e. on ∂Ω ∼ Γ−} and let β : V → L2(Γ−) be the trace with range T = H1/2(Γ−) in

V = L2(Γ−). Define B on V by (5.3) so B0 and ∂B are given by (6.1) and (6.2) on Ω and

Γ−, respectively. Let C and α be identity on H = L2(Γ−) as above.

Next we construct A on H = L2(Γ−). Let ~a2 ∈ Rn be given with ~a2 · ~ν0 < 0 on Γ−

and set Γ+ = ∂Ω0 ∼ Γ0. For each u ∈ T we can solve a non-homogeneous version of (3.1)

to obtain a unique

U0 ∈ H1(Ω0) : −∆U0 − ~a2 · ~∇U0 = 0 in Ω0(6.5.a)

U0 = u on Γ− ,
∂U0

∂ν0
+ ~a2 · ~ν0U0 = 0 on Γ+ .(6.5.b)

Then we define Au ∈ H by

(Au,ϕ)H =
∫

Ω

(~∇U0 · ~∇Φ0 + U0~a2 · ~∇Φ0) dx

for all Φ0 ∈ H1(Ω0) with Φ0 = ϕ a.e. on Γ−; note that such ϕ are dense in H. In view of

(6.5.a) it follows that

Au =
∂U0

∂ν0
+ ~a2 · ~ν0U0 in L2(Γ−) ;

this is an m-accretive operator arising from a bilinear form on H1/2(Γ−). The system

(2.6) has the form of (6.3), but on L2(Γ−)× L2(Ω) with γU = 0 in L2(Γ+), and (2.8) has

the form (6.4) with the same modification. Furthermore, we can use the definition of A

through (6.5) to write (2.6) in the equivalent form

−∆Uε
0 − a2 · ∇Uε

0 = 0 in Ω0 ,(6.6.a)
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∂Uε
0

∂ν0
+ ~a2 · ~ν0U

ε
0 = 0 on Γ+ ,(6.6.b)

Uε
0 ≡ uε , ∂BUε +

1
ε

(βUε − uε) = 0 , and(6.6.c)

∂uε

∂t
+Auε +

1
ε

(uε − βUε) = f on Γ− ,(6.6.d)

∂Uε

∂t
+B0(Uε) = F in Ω ,(6.6.e)

Uε = 0 on ∂Ω ∼ Γ− , 0 ≤ t ≤ T .(6.6.f)

This is a degenerate-parabolic system consisting of the elliptic equation (6.6.a) and the

parabolic equation (6.6.e) coupled by the boundary conditions (6.6.c) and (6.6.d). Al-

though A5 is not satisfied, the limiting case for ε → 0 can be shown to exist as before in

the form (2.8), that is, (6.6.c) becomes

U0 = u = βU on Γ−

and (6.6.d) is replaced by

∂u

∂t
+A(u) + ∂B(U) = f on Γ− .

Much of this carries over to the case of the more general operator A constructed as above

from the boundary problem (3.2) on Ω0.
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