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Abstract

Bayesian clinical trial methods sometimes use a conjugate exponential-
inverse gamma model for event times. Random inequalities between
posterior inverse gamma distributions are used to determine stopping
conditions, for example in [1]. Computing these inequalitiy probabili-
ties accounts for nearly all of the computation time used in simulating
such trials. This report presents an approximation that could reduce
this time by two orders of magnitude.

1 Approximation

When X and Y are independent inverse gamma random variables, the in-
equality

P (X > Y )

can be computed in closed form [2]. However, the probability

P (X > Y + δ)

requires numerical integration when δ > 0.

The idea presented here is simply to approximate the distribution on
Y + δ by the distribution on an inverse gamma random variable with the
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same and variance. That is,

P (X > Y + δ) ≈ P (X > Yδ),

evaluating the later exactly using the closed-form solution mentioned above.

If Y has mean µ and variance σ2, the Yδ has mean µ + δ and variance
σ2. This implies the shape parameter of Yδ is

α =
(µ+ δ)2

σ2
+ 2

and the scale parameter is

β = (α− 1)(µ+ δ).

Matching moments to define Yδ assumes that the first two moments of Y
exist. In practice, Y often has a large shape parameter and so this is not a
concern. (In the safety monitoring application developed in [1], Y represents
what is known regarding a historical control. The shape parameter is the
effective sample size and so is typically large, say on the order of 100 or
larger.)

2 Error estimation

Let fX denote the PDF of X and FY the CDF of Y . Let Fδ be the CDF of
Yδ. Then

|P (X > Y + δ)− P (X > Yδ)| =

∣∣∣∣∫ ∞

δ
fX(x) (FY (x− δ)− Fδ(x)) dx

∣∣∣∣
≤

∫ ∞

δ
fX(x) |FY (x− δ)− Fδ(x)| dx

≤ max
x
|FY (x− δ)− Fδ(x)|

This gives an upper bound on the approximation error independent of
X. However, as we will see in the next section, it is a pessimistic error
bound.
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3 Illustration

To illustrate the accuracy of the proposed approximation, let Y inverse
gamma with shape 100 and scale 99. This makes E(Y ) = 1. Rescaling
does not effect the accuracy, so we can always rescale to make the mean 1.
The variance of Y is 1/98. We pick δ = 0.1, approximately the standard
deviation of Y .

The following graph plots FY (x− δ)− Fδ(x).

The maximum absolute difference between the two functions is about
0.0025. However, to achieve this error bound, fX would have to be a point-
mass concentrated near 1.1. In practice, the distribution on Y would be
compared to distributions on X that are fairly dispersed, no more concen-
trated than Y . In this case the positive and negative differences between
FY (x− δ) and Fδ(x) would largely cancel.

We computed the error in approximating P (X > Y + δ) by P (X > Yδ),
varying the shape and scale of X. We let the shape vary from 1 to 100 and
the scale from 1 to 200. The maximum error occurs when the shape is 100
and the scale is 88.489. At that point the true inequality value is 0.06194
and the approximate value is 0.06240, a difference of 0.00046, about 5 times
smaller than the upper bound on error given in the previous section. The
average error over the same region is 0.0000453 which is about 10 times
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smaller than the maximum error.
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