Notes on hypergeometric functions

John D. Cook

April 10, 2003

1 Definitions and notations

Define the k th rising power of a real number a by

$$
a^{\bar{k}}=a(a+1)(a+2) \cdots(a+k-1) .
$$

Similarly, define the k th falling power of a by

$$
a^{\underline{\underline{k}}}=a(a-1)(a-2) \cdots(a-k+1) .
$$

We define

$$
a^{\overline{0}}=a^{\underline{0}}=1 .
$$

The quantity $a^{\bar{k}}$ is sometimes denoted by the "Pochammer symbol" $(a)_{k}$.
In calculations, it is often convenient to convert between rising powers, falling powers, and factorials. When a is not an integer, interpret $a!$ as $\Gamma(a+1)$ in the notes below.

$$
\begin{aligned}
a^{\bar{k}} & =(a+k-1)!/(a-1)! \\
a^{\underline{k}} & =a!/(a-k)! \\
(a+k)! & =a!(a+1)^{\bar{k}} \\
(a-k)! & =a!/ a^{\bar{k}}
\end{aligned}
$$

A hypergeometric function is a function whose power series representation has the form

$$
\sum_{k \geq 0} \frac{a_{1}^{\bar{k}} \ldots a_{p}^{\bar{k}}}{b_{1}^{\bar{k}} \ldots b_{q}^{\bar{k}}} \frac{z^{k}}{k!}
$$

We denote such a function by $F\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)$.

A hypergeometric function is called Gaussian if $p=2$ and $q=1$. This is the most common form and is often called the hypergeometric function. If $p=q=1$ then the function is called a confluent hypergeometric function. Otherwise the function is called a generalized hypergeometric function.

One can show that a function is hypergeometric if and only if in the representation

$$
f(z)=\sum_{k \geq 0} t_{k} z^{k}
$$

the ratio

$$
\frac{t_{k+1}}{t_{k}}
$$

is a rational function of k. The parameters of the hypergeometric function are zeros and poles of this rational function.

2 Transformations

The function $F(a, b ; c ; z)$ satisfies seven identities known as linear transformations. These relationships are typographically complex and will only be summarized here. See Abramowitz and Stegun for full details.

These the linear transformations relate $F(a, b ; c ; z)$ to $F\left(a^{\prime}, b^{\prime} ; c^{\prime} ; z^{\prime}\right)$ where z is one of the following:

- z
- $1 / z$
- $1-z$
- $(z-1) / z$
- $z /(1-z)$
- $1 /(z-1)$

In terms of the parameters, the linear transformations relate $(a, b ; c)$ to

- $(c-a, c-b ; c)$
- $(a, c-b ; c)$
- $(b, c-a ; c)$
- $(a, b ; a+b-c+1)$ and $(c-a, c-b ; c-a-b+1)$
- $(a, 1-c+a ; 1-b+a)$ and $(b, 1-c+b ; 1-a+b)$
- ($a, c-b ; a-b+1)$ and $(b, c-a ; b-a+1)$
- $(a, a-c+1 ; a+b-c+1)$ and $(c-a, 1-a ; c-a-b+1)$

There exist quadratic transformations if and only if out of the six numbers

$$
\pm(1-c), \quad \pm(a-b), \quad \pm(a+b-c)
$$

either two are equal or one equals 1/2. Again see Abramowitz and Stegun for details.

3 Hypergeometric forms of common functions

$$
\left.\begin{array}{rl}
e^{z} & =F(\cdot ; \cdot ; z) \\
(1-z)^{a} & =F(-a ; \cdot ; z) \\
(1+z)^{2 a}+(1-z)^{2 a} & =2 F\left(-a ; \frac{1}{2}-a ; \frac{1}{2} ; z^{2}\right) \\
(1+z)^{2 a}-(1-z)^{2 a} & =4 a z F\left(\frac{1}{2}-a ; 1-a ; \frac{3}{2} ; z^{2}\right) \\
\left(\frac{1}{2}+\frac{1}{2}(1-z)^{\frac{1}{2}}\right)^{1-2 a} & =F\left(a, a-\frac{1}{2} ; 2 a ; z\right) \\
(1+z)(1-z)^{-2 a-1} & =F(a+1,2 a ; a ; z) \\
\cos (z) & =F\left(\cdot ; \frac{1}{2} ;-\frac{1}{4} z^{2}\right) \\
\sin (z) & =z F\left(\cdot ; \frac{3}{2} ;-\frac{1}{4} z^{2}\right) \\
\cos (2 a z) & =F\left(-a, a ; \frac{1}{2} ; \sin ^{2} z\right) \\
\sin (2 a z) & =2 a \sin z F\left(\frac{1}{2}+a, \frac{1}{2}-a ; \frac{3}{2} ; \sin ^{2} z\right) \\
z \csc z & =F\left(\frac{1}{2}, \frac{1}{2} ; \frac{3}{2} ; \sin ^{2} z\right) \\
\log (1-z) & =z F(1,1 ; 2 ; z) \\
\log \left(\frac{1+z}{1-z}\right) & =2 z F\left(\frac{1}{2}, 1 ; \frac{3}{2} ; z^{2}\right) \\
\arcsin (z) & =z F\left(\frac{1}{2}, \frac{1}{2} ; \frac{3}{2} ; z^{2}\right) \\
\arccos (z) & =F\left(\frac{1}{2}, 1 ; \frac{3}{2} ;-z^{2}\right) \\
\arctan (z) & =z F\left(\frac{1}{2}, 1 ; \frac{3}{2} ;-z^{2}\right) \\
I_{x}(a, b) & =\frac{x^{a}(1-x)^{b}}{a B(a, b)} F(1, a+b ; a+1 ; x) \tag{17}\\
& =a+1
\end{array}\right)
$$

$$
\begin{align*}
\gamma(a, z) & =\frac{z^{a}}{a} F(a ; a+1 ;-z)=\frac{z^{a}}{a} e^{-z} F(a ; a+1 ; z) \tag{18}\\
\operatorname{Erf}(z) & =z F\left(\frac{1}{2} ; \frac{3}{2} ;-z^{2}\right)=z e^{-z^{2}} F\left(1 ; \frac{3}{2} ; z^{2}\right) \tag{19}\\
P_{n}^{(\alpha, \beta)}(x) & =\frac{(\alpha+1)^{\bar{n}}}{n!} F\left(-n, n+\alpha+\beta+1 ; \alpha+1 ; \frac{1-x}{2}(20)\right. \\
K(z) & =\frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; z^{2}\right) \tag{21}\\
E(z) & =\frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2} ; 1 ; z^{2}\right) \tag{22}\\
J_{\nu}(z) & =\frac{(z / 2)^{\nu}}{\Gamma(\nu+1)} F\left(\cdot ; 1+\nu ;-\frac{z^{2}}{4}\right) \tag{23}\\
I_{\nu}(z) & =\frac{(z / 2)^{\nu}}{\Gamma(\nu+1)} F\left(\cdot ; 1+\nu ; \frac{z^{2}}{4}\right) \tag{24}
\end{align*}
$$

In the above table,

$$
\begin{aligned}
I_{x}(a, b) & =\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t \quad \text { (incomplete beta) } \\
\gamma(a, z) & =\int_{0}^{z} t^{a-1} e^{-t} d t \quad \text { (incomplete gamma) } \\
\operatorname{Erf}(z) & =\int_{0}^{z} e^{-t^{2}} d t \quad \text { (error function) } \\
K(z) & =\int_{0}^{\pi / 2}\left(1-z^{2} \sin ^{2} t\right)^{-1 / 2} d t \quad \text { (complete elliptic integral 1st kind) } \\
E(z) & =\int_{0}^{\pi / 2}\left(1-z^{2} \sin ^{2} t\right)^{1 / 2} d t \quad \text { (complete elliptic integral 2nd kind) }
\end{aligned}
$$

Also, $P_{n}^{(\alpha, \beta)}(x)$ is the nth Jacobi polynomial with parameters α and β.

4 References

"Generalized Hypergeometric Series" by W. N. Bailey, Cambridge (1935)
"Handbook of Mathematical Functions" by Abramowitz and Stegun (1964)
"The special functions and their approximations" by Yudell L. Luke v. 1 (1969)
"Concrete Mathematics" by Graham, Knuth, and Patashnik (1994)

