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“I can’t understand anything in general unless I’m carrying along in my mind a specific example and 

watching it go. Some people [think] I’m following the steps mathematically, but that’s not what I’m 

doing.” 

— R. P. Feynman

Abstract
This tutorial offers a bridge between the abstract mathematics of manifolds and computational prac-
tice. Computational  practice means writing simulation and control software in terms of matrices and
vectors. We offer elementary examples fully explained and illustrated at length.

Nowadays,  some  understanding  of  differential  geometry  is  increasingly  necessary  even  if  your  only
objective  is  to  do  calculations,  not  to  do  proofs.  That’s  because  differential  geometry  has  crept  into
robotics,  simulation,  and  computer  games,  where  it  supports  much  better  numerical  performance
than  older  approaches.[19][20]  It  has  been  essential  in  Physics  since  General  Relativity  in  1915  and
Gauge Theory in the 1950’s. Before that, it was an arcane discipline in pure mathematics. But it seems
that differential geometry in many dimensions rules the natural World, all the way from quarks (gauge
theory)  through  robots  (Hamiltonian  mechanics)  to  superclusters  of  galaxies  and  beyond  (general-
relativistic cosmology).

Contemporary books and papers can be challenging. Many are written in highly abstract mathematical
style (proofs without examples), with more generality than needed for applications (unphysical topolo-
gies), and with unfamiliar notation. If you didn’t learn fiber bundles, exterior calculus, and Lie theory in
school and you want to catch up fast, this tutorial might be interesting to you. You’ll be equipped to
read papers without choking on things you’ve never heard of, and get through to the juicy bits where
we learn from the heavy math how to do calculations with matrices and vectors.



Introduction
In simulation and control, we integrate equations of motion. Numerical integration of the continuous
Euler-Lagrange  equations  has  given  way  nowadays  to  discrete,  conservative,  geometric,  variational
integration on Lie groups,[19] for the following reasons:

◼ Discretizing the Lagrangian and approximating action as a sum instead of discretizing the 

continuous action integral produces better conservation of energy and momenta.

◼ Coordinate systems in three dimensions have essential singularities that cannot be eliminated. The 

entire class of consequent phenomena can lead to failures of numerical integration in many 

different ways. 

◼ Quaternions and axis-angles eliminate singularities by double-covering the 2-sphere, but do not 
mitigate non-conservation of momenta and energy. Frequent renormalization or very small time-
steps are expensive fixes, often too expensive. 

◼ Integration in the Lie group SE(3) is a better fix for rigid bodies because it automatically conserves 

momenta and energy. 

The Lie groups needed for simulation and control are differentiable manifolds, abstract curved spaces
analyzed through differential geometry and topology. 

Prerequisites
We assume linear algebra and multivariable calculus: typical undergraduate applied mathematics for
engineering and science. We do not assume topology, point-set topology, real analysis, tensors, exte-
rior algebra and calculus, differential forms, generalized Stokes’ theorem, Lie groups, Lie algebras, or
Hodge theory. We do not even assume basic concepts of pure mathematics, like equivalence class, set
theory, bijection, surjection, and partial function. If you already know topics, this tutorial may be too
slow for you.

The  following  terms  should  immediately  bring  to  mind  a  concrete  realization  and  a  calculational
procedure,  i.e.,  we  assume  you  know  how  to  write  software  with  them:  matrix,  inverse,  transpose,
determinant, column vector, row vector, divergence, gradient, curl, Jacobian, Hessian. We also assume
you know that column and row vectors are punned as flat lists in Mathematica.
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Cheat Sheet
The following table summarizes chapter 4 of reference [14]. To keep it small, it is not self-contained,
but rather presented in very roughly the order of this tutorial to help you jump to various parts, also as
a reference to return to. Many items might not be understandable without forward reading. Reference
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[14] is authoritative for details and in the case of errors in the table and in the rest of this document.
The red highlighted item is a particularly obtuse bit of notation, and we explain it at length in the body
of the tutorial.

NOTION NOTATION DEFINITION REMARKS

Manifold M , N abstract collection
of abstract points

adddifferentiable
structure

Coordinate Chart (U, φ) U⊂M , Uopen
φ : U↔ φ (U)⊂ n

φ(m) =

x1, x2,…, xn

OpenSet U , U' primitive from
topology

detailed
knowledge not
needed

Compatible Charts (U, φ), (U ′, φ′) φ′ ◦φ-1 φ (U⋂ U′)

isC∞; φ (U⋂ U′) and
φ′(U⋂ U′) are open

DifferentiableManifold Everym ∈ M is in
at least one chart

M is a union of
compatible charts

Differentiable Structure Maximal atlas Collection of all
compatible charts

Neighborhood φ-1 applied to
neighborhood inn

Hausdorff topology :
m ≠m ' 

∃ non-intersecting
neighborhoods inM

Equivalent curves c1(0) = c2(0)
(φ◦c1)′ (0) = (φ◦c2)′ (0)

c1 : M

c2 : M

for some chartφ

Tangent Vector v (m) Equivalence class
of curves

Equivalence Class [c (t)] All curveswith same
value andderivatives
through some chart
φ at t = 0

Tangent elsewhere
on a curve

∀ c(t), def c′(s) at c(s)
dc
dt t=0

c′(s) ∈ eqv. class
[(t c(s + t)) t=0]

finite distance
s down curve c(t)

Tangent Space TmM Space of all tangent
vectors atm ∈M

THEOREM : Tm M
is a vector space

Components of a
Vector

v i = d
dt
(φ◦c)i t=0 Superscript runs

over the dimensions
Each component
is a real number

Tangent Bundle TM =  Tm M Includes local dimension is 2 n ;
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
m∈M coordinates and

components of
vectors

⊔ is disjoint union

Natural Projection τM : TMM
τM
-1(m) = Tm M

Returns attachment
point of a vector

τM
-1(m) is the fiber
of TM atm

Differentiable,
Derivative

With f :MN
Tm f : Tm M Tf (m) N

Tm f is a linearmap
i.e., amatrix, s.t.
Tm f ·v =

Tm f ·
dc
dt t=0 =

d
dt
f (c(t)) t=0

M andN are
manifolds

Diffeomorphism f :M N Bijective,
differentiable,
& diff ' ble inverse

donut &
coffee cup are
diffeomorphic

   

Motivating Example

Get Your Kicks on Route 55
Let M, a manifold, be a set of abstract points representing a part of the surface of the Earth between St.
Louis in the North and New Orleans in the South and wide enough for the Mississippi River. We call it a
manifold  because  it’s  many-folded,  that  is,  curved.  Though  this  one  doesn’t  have  many  folds,  more
general cases do. 

This manifold, however, is sufficiently curved to be interesting and to illustrative. To start, M just a set
of points on the globe. There is obvious organization of the points. It is obvious to say that "Memphis is
between  St. Louis and New Orleans" and "Interstate 55 roughly follows  The River." But we don't yet
know how to be precise in those statements because of the curvature. We know Euclidean geometry,
Cartesian analytical geometry, and trigonometry, and we know they don’t work on curved surfaces. We
can’t calculate the distance from St. Louis to New Orleans simply by subtracting their latitude-longi-
tude  coordinates.  The  math  we  know  only  works  on  flat  surfaces.  Can  we  relate  the  two?  That’s  the
topic  of  differentiable  manifolds  in  a  nutshell:  relating  sets  of  points  on  curved  manifolds  to  flat,
Euclidean hyperplanes where we know how to calculate. Sometimes, the curved manifolds like the
globe have two dimensions. Sometimes, they have many more. The SU(3) group of quantum chromody-
namics is a manifold eight real dimensions (https://en.wikipedia.org/wiki/Special_unitary_group). 

IntroductionToManifolds006.nb     5



6     IntroductionToManifolds006.nb



Definition: Parameterized Curve
Imagine  a  collection  of  parameterized  curves  that  map  real  numbers  (parameters)  to  points  in  the
manifold,  the  globe  in  our  example.  Denote  one  member  of  that  collection  as  c.  c  is  a  function.  The
value of that function, c(t), given a real number t, is a point m ∈M in the manifold. As t, a real number,
advances, c(t) names one point on the Earth’s surface, then another point nearby, then another even
further, and so on. 

How do we “name” points in the manifold and how we decide what “nearby” means. Don’t say “lati-
tude  and  longitude!”  just  yet,  because  that’s  a  particular  numerical  scheme,  a  chart,  and  we’re  not
there yet. There are lots of other ways to name points on the Earth’s surface. 

Definition: Point
What’s a point? It’s smaller than a ten-foot square. It’s smaller than an inch. It’s smaller than an atom.
It’s smaller than an atomic nucleus.

Physics hints that we can’t measure anything smaller than the Planck length, about 10-33 cm, so that
will do. That’s really small, by the way: a hundred million trillion (1020) times smaller than an atomic
nucleus, which is about 10-13 cm across. If we can uniquely name any little Planck square, 10-33 cm on
a side, anywhere on the globe, could anyone ask for anything more in the real world?

Mathematicians, of course, reason outside the real world with uncountable infinities of infinitesimally
small  points.  Such  reasoning  is  necessary  for  a  rigorously  logical  understanding  of  calculus,  but  we
don't go that far in this example. We're trying to stay concrete. See ref [15] for a beautiful account of
calculus from a rigorously logical point of view. The abstract notation we’re explaining in this tutorial
assumes  you  have  heard  of  that  point  of  view,  which  is  artificially  and  ironically  called  real  analysis,
based on point-set topology. You don’t have to be proficient in those topics to do calculations. 

WhatThreeWords: Unique Names for Ten-Foot Squares
The web site "WhatThreeWords.com" gives a unique name to every ten-foot square on the surface of
the Earth (it might not work very close to the North and South Poles). 

Pick  some  point  on  the  surface.  We  showed  above  that,  for  practical  purposes,  a  point  is  a  Planck
square. Pick a specific Planck-square in a specific nucleus of a specific atom in a specific USGS geodetic
marker in Winona, Mississippi, the seat of Montgomery County. "WhatThreeWords" has a unique name
for  the  ten-foot  square  that  encloses  our  point.  That  name  is  "jokers.priced.pursuit"  (http-
s://map.what3words.com/jokers.priced.pursuit). 

We'll  give  the  same  name  to  our  Planck-square:  "jokers.priced.pursuit,"  or  mW  for  short.  Yes,  we’re
using the same name for a single Planck square as for a ten-foot-square patch that contains 1071 other
Planck squares.
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The important point is that these three-word string-names contain no metrical information. Given two
string-names,  it’s  impossible  to  tell  whether  the  corresponding  ten-foot  squares  are  adjacent  or  ten
thousand miles apart. From a user’s point of view, the names are randomly chosen.

WhatTwentyOneWords: Unique Names for Planck Squares
It turns out that a string of twenty-one words from a personal vocabulary of mine suffices to uniquely
name every one of about 56×1083  Planck squares that could tile the Earth, with a practical algorithm
that we could code up easily. Practically speaking, we could name points on the Earth to any level of
refinement or detail we want. We are not stuck with ten-foot precision. 

Definition: Manifold
To  a  mathematician,  a  manifold  is  an  uncountably  infinite  set  with  elaborate  structure  and  rules  of
abstract  points  of  size  exactly  zero  (in  the  limit).  The  purpose  of  the  structure  and  rules  is  to  make
linear algebra and ordinary calculus work so that any of us can do calculations on abstract and nearly
arbitrarily curved spaces! Calculus, however, works in Euclidean, n-dimensional vector spaces, n. The
structure and rules of manifolds let us set up Euclidean spaces almost anywhere on a manifold.

Aside: Do-It-Yourself Naming
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If you are not interested in how to name points and squares with strings of words, nor in my guesses
about how “WhatThreeWords” works, skip this section.

It’s interesting to figure out how “WhatThreeWords” might work. This is my guess. 

There  are  a  little  fewer  than  56×1012  ten-foot  squares  on  Earth.  The  surface  area  of  Earth  is

4π r⊕
2 ≈ 197 million square miles, where r⊕  is the radius of Earth, about 3959 miles. Call it 200 million

square miles to get an overestimate. 

In[1]:= UnitConvert Earth PLANET  surface area , "Miles"^2

Out[1]= 1.96937 × 108 mi2

Each square mile is 52802 = 27878400 square feet, call it 28 million. That makes 5600 trillion (million
million) square feet for the whole Earth, or about 5.6×1015.

In[2]:= UnitConvert Earth PLANET  surface area , "Feet"^2

Out[2]= 5.4903 × 1015 ft2

Each 10-foot square comprises 100 square feet, so divide 5600 trillion for a total of about 56×1012, 56
trillion squares. 

56 × 1012 Unique Names

If we’re going to give 56×1012 squares each a unique name of three words, what size of vocabulary will

we need? About 56×1012
3

≈ 38258. That’s about twice the average adult’s vocabulary, according to
The  Economist  (https://www.economist.com/johnson/2013/05/29/lexical-facts).  Science  magazine
reckons  that  the  average  adult  native  speaker  of  English  has  a  vocabulary  of  42000  words  counting
“lemmas” like “help,” “helpful,” “helpfulness,” and words that are easy to understand by guessing, like
“biblioklept”  (https://www.sciencemag.org/news/2016/08/average-20-year-old-american-
knows-42000-words-depending-how-you-count-them).  By  either  reckoning,  the  vocabulary  of  38258
words necessary for “WhatThreeWords” is entirely reasonable. 

WhatFourWords: Using My Own Dictionary

I  can  make  my  own  version  of  “WhatThreeWords,”  not  an  exact  clone,  because  I  don’t  have  their
dictionary, but I do have my own 15141 words that I collected for word games:

To get 56 trillion  unique combinations, I need four  of  my words 151414 ≈ 5.25555×1016  is 900 times

more than enough, but 151413 ≈ 3.47107×1012 isn't enough). So my imaginary version of their web site
would have to be “WhatFourWords.” 
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Names for Planck Squares

We want to uniquely name every Planck square on Earth. How many of my words would we need? 

A Planck length is 10-33 cm, and a Planck square is 10-66 cm2, or 

In[3]:= UnitConvertQuantity1.0 * 10-66, "square cm", "square ft"

Out[3]= 1.07639 × 10-69 ft2

That  means  there  are  about  1069  Planck  squares  per  square  foot,  or  about  5600×1012+69 = 56×1083

Planck squares on the surface of the Earth. The logarithm, base 15141, of (56×1083) is about 20.27. I
need  at  least  that  many  of  my  words  to  uniquely  identify  every  Planck  square  on  Earth.  A  string  of
twenty-one of my words would be more than enough. Anyone, with a little effort, could even memorize
a few of these strings of twenty-one words. 

We  have  a  practical  scheme  for  naming  every  Planck  square  on  Earth:  every  point  that  is  a  hundred
million trillion times smaller than an atomic nucleus named with just twenty-one words in a string.

It's not crazy to imagine a "WhatTwentyOneWords" web site for uniquely naming every Planck square
on Earth. It is crazy to imagine a random assignment of names, because such would require a database
with 56×1083  rows, a lot more rows than there are electrons in the entire Universe (about 1080, http-
s://io9.gizmodo.com/5876966/what-if-every-electron-in-the-universe-was-all-the-same-exact-particle).
However,  we  could  implement  “WhatTwentyOneWords”  by  systematically  numbering  the  Planck
squares, tiling the Earth in strips of constant latitude or an ascending spiral, or with clever Twarock-
Konestova  or  Caspar-Klug  (soccer-ball)  tilings  (https://archive.bridgesmath-
art.org/2018/bridges2018-237.pdf), and then treating my words as numerals in radix 15141. We could
even implement that right here and now in this notebook, but maybe you'd like to do that on your own,
just for fun, of course. 

It would not be secure. A dedicated hacker could discover our systematic scheme and then clone our
site. How "WhatThreeWords" protects their intellectual property is anyone's guess, but if I were they, I
might just use a random distribution and a database. It's just barely practical to have a database of 56
trillion items (e.g., InnoDB can do it). Lots of interesting crypto tricks like zero-knowledge proofs are
conceivable, too, but let’s get back on track with manifolds.

Curves near mW

We’re using the same name for the ten-foot square from “WhatThreeWords” and for our specific Planck
square in our specific atom of our specific geodetic marker in Winona, MS, but we won’t get confused. 

Consider a bunch of parameterized curves, c(t), that all go through mW. Adjust their parameters so that
when t = 0, all the curves equal mW. The following picture illustrates three such curves.
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All these curves must always be, for any t ∈  whatever, in the manifold. That means they cannot wan-
der off up into the sky or below the ground. We can’t go paragliding or mining with “WhatThreeWords.”
But the curves can go in loops and whorls and knots, no problem.

Differentiable
The curves can go in loops and whorls and knots, but they must must be at least long enough to strad-
dle  mW  when  the  parameter  t  of  any  curve  is  near  zero,  either  side  of  zero.  And  the  curves  must  be
"differentiable" there, at t = 0. What could that mean? 

The  usual  definition  for  derivative,  when  applied  to  a  curve  c(t)  at  any  t  could  only  be  to  take  two
nearby  points,  c(t + h)  and  c(t),  where  h  is  small,  subtract  them,  divide  by  h,  and  go  to  the  limit,
limh0 (c(t + h) - c(t)) /h.  That  doesn't  make  sense  because  c(t + h) - c(t)  can  only  mean  "subtracting"
two points in the manifold and we have no idea what subtraction could mean in the manifold. How do
you subtract a point in St. Louis, say “hope.school.hype,” 
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from a point in New Orleans, 600 miles away, say "joins.slides.predict?" 

Even if two points are really close, say the lamppost "bottle.ruled.varieties" in St. Louis 
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and the next lamppost at "heavy.beyond.speeds," 
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we don't know how to "subtract" them. We can subtract angles or vectors, but not points. 

Definition: Chart
We need a chart, a way to convert points in the manifold to numerical  things like angles or vectors.
We’re only going to work with a trivial chart to keep this example simple and easy, but take a look at
Wikipedia’s  collection  of  map  projections  https://en.wikipedia.org/wiki/List_of_map_projections.
Coming  up  with  charts  is  difficult  and  is,  in  fact,  a  principal  problem  for  mapmakers  and  manifold
theorists.  Many  of  these  map  projections  were  specially  constructed  in  earlier  times  when  people
calculated distances, headings, and areas by hand or even in their heads. Various map projections are
specialized  for  distances,  angular  headings,  or  areas,  but  can’t  support  all  three,  or  even  more  than
one, efficiently. A human navigator may need several charts to get the job done. Many charts are set up
for physical measurements on flat paper with protractor, ruler, and compass. We still use those charts
in computers, just with virtual protractors, rulers, and compasses. 

Distances: Coordinate and Metrical Distances
The web API (not necessarily the GUI) of “WhatThreeWords” implements a chart: you give it a three-
word name  and it gives you  back a latitude  and  longitude. Latitudes and longitudes  won’t yield dis-
tances directly by subtraction, but we can compute purely formal sums and differences, called coordi-
nate distances. We’ll construct a slightly complicated function below that produces metrical distances
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from lats and lons — actual feet and miles on the ground that you’d get from an odometer. We won’t
get into complicated charts like Wikipedia’s map projections. The purpose of this tutorial is to help you
appreciate manifolds from simplified examples, not to get you into all the details.

Definition: Open Sets (Trouble at the Poles)
Many charts of the Earth have trouble near the North and South Poles, but people don't ordinarily go to
either place, so cartographers often park troublesome bits at the poles. "WhatThreeWords" goes way
up in latitude, but I haven't found the North Pole, yet, because their display-maps don't show anything
up there and I can't see what I’m doing. The South Pole seems to be at "greenhouses.recommitting.mul-
tiplexes"  because  the  maps  go  crazy  there  and  the  web  app  doesn't  behave  well.  We  shouldn't  play
around where we know someone else's web app chokes up; that's a denial-of-service attack. So I gave
up at the first sign of trouble, but there was trouble. Maybe it’s fixed, now.

In  manifolds,  we  work  with  open  sets,  a  purely  formal,  logical  notion  in  topology.  Open  sets  make
calculus work by excluding troublesome bits. Our main goal, after all, is to make calculus work, so we
mention  open  sets  frequently  in  the  statements  and  proofs  of  theorems.  You  don’t  need  to  know
topology to get through this tutorial, but you must resort to the formalities to strike out on your own. 

Intuitions  about  open  sets  are  notoriously  misleading.  Some  sets  can  be  both  open  and  closed,  and
some sets can be neither open nor closed. It took 300 years to make calculus rigorously logical, after all,
even though it was working well for physics and engineering from the days that Newton and Leibniz
invented  it.  In  fact,  there  is  evidence  that  Archimedes,  almost  2000  years  prior,  had  the  inklings  of
calculus  (https://www.amazon.com/Archimedes-Codex-Revealing-Antiquitys-Scientist/d-
p/030681580X). See references [15] and [18] if you’re driven to know the topology behind calculus.

For  applications  in  classical  physics  and  engineering,  the  example  of  "trouble  at  the  poles"  is  the
intuition needed to understand an open set. You can go near a pole, and maybe inch a little nearer, and
a littler nearer, but eventually you'll reach the limits of some practical computation and that will be the
end of your session. You might as well have hit the excluded point dead-on.

Definition: Dimension
Any  chart  on  the  Earth  must  let  us  convert  three-word  names  or  features  like  lampposts  to  pairs  of
numbers. We can't do with fewer than two numbers per point, and three wouldn't help. We’re near the
Mississippi River and we’re not paragliding or mining. The Earth manifold represented by any chart is
two-dimensional,  exactly  two-dimensional.  Likewise,  any  chart  of  the  Lie  Group  SU(3)  must  have
exactly eight dimensions.

Definition: Derivative of a Curve Through a Chart
We can’t compute derivatives of the curves, but we can compute derivatives of “well-behaved” charts
composed with curves. Charts return pairs of real numbers, and we know how to compute derivatives
of functions from one real parameter, t, to two real numbers, lat and lon. We speak of the derivative of
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a curve through a chart. What are the derivatives of one of our curves c(t) through the lat-lon chart φ?
Write the derivatives as d(φ◦c) /dt, but that's still too abstract. We want our curve c(t) to go through
mW, ///jokers.priced.pursuit , when the parameter t = 0. 

The value of the chart at any point of the manifold is a tuple of numbers called the coordinates of the
point in that chart. Charts are also called coordinate systems for this reason. It’s best to think of charts
as  functions,  however,  that  convert  abstract  points  on  the  manifold  into  tuples  of  real  numbers.  We
then think of these tuples as members of n, ordinary, flat, Euclidean space, where we know how to
calculate.  Incidentally,  the  whole  machinery  also  works  in  the  complex  numbers,  essential  for  quan-
tum physics, but we’re not going there in this tutorial.

The  web  API  of  “WhatThreeWords”  gives  the  coordinates  of  ///jokers.priced.pursuit  as
(lat = 33.488883, lon = -89.731397).  That’s  not  nearly  the  34  or  35  decimal  places  we’d  need  for  a
Planck square, but let’s see how precise it is. One increment of latitude in the last place will be about
4.3 inches, not bad:

In[4]:= rEarth = UnitConvert Earth PLANET  average radius , "inch" *

(33.488884 - 33.488883) °

Out[4]= 4.37776 in

At that latitude, one increment-in-last-place of longitude, using easy spherical trigonometry, is about

In[5]:= rEarth * Cos[33.488883 °] (-89.731397 + 89.731398) °

Out[5]= 3.65102 in

Definition: Function Composition
The symbol φ◦c is a function composition and means “a new function that feeds the output of one old
function,  the curve  c, to the  input of another  old function,  the chart φ.” Read the  symbol φ◦c  as “φ
[phi] compose c” or “ϕ on c.” We stress that the new composition φ◦c denotes one new function made
up from two old functions, φ and c. 

We could make our curve c return string-names from "WhatThreeWords" and then use their web API as
our  chart  φ  to  look  up  lats  and  lons.  That  would  be  fun  and  even  practical,  but  would  only  give  us
precision  to  ten feet.  At  least  near  mW,  we  can  get  results  good  to  about  5  inches.  Going  for  higher
precision comes at the cost of making our curve c return lats and lons and our chart φ do nothing, or,
better stated, be the trivial chart. 

All that  talk about three-word  names for nothing?  No, because we could  still do it  that way, and  we
might have to do something like that in other applications. For the purposes of this example, to give
you something easy to remember, a do-nothing chart φ and curves that “cheat” by giving lat-lons will
be OK because we're only interested in the derivative of the composition φ◦c, namely d(φ◦c) /dt. If we
were to use the string-form curve c, we'd have a lot more work to do with the chart, beating on the web
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API of "WhatThreeWords" to figure out how tiny increments in t  lead to tiny increments in φ◦c. That
wouldn’t be nice to beat on their web site. If they’re smart, they’ll notice we’re doing that and throttle
our web access or even demand money! Let’s not.

What Does “Nearby” Mean?
We know how to take two lat-lons and tell whether they’re nearby or not: look at the differences in the
last place of their decimal expansions. Can we tell whether two points on the manifold are nearby? Not
without  a  chart.  This  observation  begs  the  question  of  “how  do  we  construct  a  curve  purely  on  the
manifold, where nearby parameters t + h and t yield nearby points on the manifold?” We have to back
into it from a chart. We’d have to construct something with sensible values for φ◦c(t), then apply the
inverse chart function ϕ-1

 to get something on the manifold M.

A First Curve
We need a curve c1  to specify nearby points in the manifold for nearby values of t, where we under-
stand  "nearby"  to  be  increments  in  last  place  shown  above.  Let  one  increment  of  t  correspond  to
0.000001 degree — about five inches — in each of lat and lon for any t. To make sure that our c goes
through mW  when t = 0, write

ϕ◦c(t) =
33.488883 + 0.000001 t
-89.731397 + 0.000001 t (1)

In[6]:= ϕc1$[t_] := {{33.488883 + 0.000001 t}, {-89.731397 + 0.000001 t}};

That's  our  do-nothing  chart  composed  with  a  particular  c  curve,  a  very  boring  curve  that  goes  com-
pletely straight, but just one of uncountably many. The derivative of φ◦c evaluated at t = 0 is a con-
stant (that’s what “completely straight” means):
d(φ◦c)

dt
t=0 =

0.000001 °
0.000001 °

(2)

In[7]:= D[ϕc1$[t], t] // MatrixForm
Out[7]//MatrixForm=

1. × 10-6

1. × 10-6

A Second Curve
Imagine another curve c2  that goes through mW  but wiggles in some way (through the chart) with lat
and lon away from that point:

ϕ◦c(t) =
33.488883 + 0.000001 t + .000042 

Sin[t]
t

- 1

-89.731397 + 0.000001 t*Cos[0.90 t]2
(3)
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In[8]:= ϕc2$[t_] := 33.488883 + 0.000001 t + .000042
Sin[t]

t
- 1 ,

-89.731397 + 0.000001 * t * Cos[0.90 t]2;

That’s another curve through the chart. The composition has the same value and derivatives at mw  as
does the composition with the boring, straight curve. The new curve is just another one of the uncount-
ably many that have the same value and derivatives at mW.

Here are plots, showing the wiggles, of the lat and lon parts of that new composition ϕ◦c(t) around
t = 0. Notice the very fine resolution of the vertical axes. The wiggles are small.

In[9]:= Plot[ϕc2$[t]〚1〛, {t, -10, 10}, Frame  True, FrameLabel  {{"lat [degree]", ""},
{"t", "Latitude component of second curve composed with φ"}}]

Out[9]=

-10 -5 0 5 10

33.4888

33.4888

33.4888

33.4889

33.4889

33.4889

t

la
t[
de
gr
ee

]

Latitude component of second curve composed with φ

In[10]:= Plot[ϕc2$[t]〚2〛, {t, -10, 10}, Frame  True, FrameLabel  {{"lon [degree]", ""},
{"t", "Longitude component of second curve composed with φ"}}]

Out[10]=

-10 -5 0 5 10

-89.7314

-89.7314

-89.7314

-89.7314

t

lo
n
[d
eg
re
e]

Longitude component of second curve composed with φ

Here they are together, making loops and whorls and knots. In this next plot, we can’t see the parame-
ter t directly, but this is roughly what the curve looks like on the ground. 
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In[11]:= ParametricPlot[Reverse@ϕc2$[t], {t, -10, 10},
FrameLabel  {{"lat [degree]", ""}, {"lon [degree]",

"Second curve composed with φ, North UP"}}, Frame  True, AspectRatio  1]
Out[11]=

-89.7314 -89.7314 -89.7314 -89.7314

33.4888

33.4888

33.4888

33.4889

33.4889

33.4889

lon [degree]

la
t[
de
gr
ee

]

Second curve composed with φ, North UP

Definition: Tangent Vector
Even though our two curves c1  and c2  behave very differently when t  is not zero — one goes straight
and the other one wiggles — they are indistinguishable, at least as to value and derivatives through the
chart, when t = 0. Here is the proof that the derivatives of ϕ◦c2  are indistinguishable from the deriva-

tives of ϕ◦c1, which we know to be 
0.000001 °
0.000001 °

. We must take a limit to prevent division by zero:

In[12]:= D[ϕc2$[t], t] // FullSimplify // MatrixForm
Out[12]//MatrixForm=

1. × 10-6 +
0.000042 t Cos[t]-0.000042 Sin[t]

t2

5. × 10-7 + 5. × 10-7 Cos[1.8 t] - 9. × 10-7 t Sin[1.8 t]

In[13]:= Limit[D[ϕc2$[t], t], t  0] // MatrixForm
Out[13]//MatrixForm=

1. × 10-6

1. × 10-6

We begin by simply defining the words tangent vector to mean the set of all curves that are indistinguish-
able as to value and first derivatives through some chart at a certain point with parameter t = 0. Don’t go
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crazy trying to think how a set of curves could be called a vector, when you know full well that a vector
is a tuple of numbers or an arrow pointing from one point to another, not a set of curves! We could use
words other than “tangent vector,” like blueberry blancmange, but we give some discussion to explain
why the words tangent vector are sensible, very sensible. 

The two curves we wrote are two elements of the tangent-vector-as-a-set. We can come up with many
more. The number of equivalent curves is uncountable: just change the hard-coded numbers 0.00042
and 0.90 by small, real-number amounts to get new, different curves. The real numbers are uncount-
able. The values and derivatives of every curve in the same tangent-vector set as our two curves are the

same mW  and the same 
0.000001
0.000001

 at t = 0. 

It makes sense to lump all the curves with the same values and the same derivatives into one collec-
tion, and it makes a twisted kind of sense to call the collection THE tangent vector. Consider another
collection of curves with the same value mW  as the first collection, but different derivatives through the

chart, say 
0.0000022
-0.0000015

. We really can compute dot products between the derivatives of any curve in

one  tangent-vector  set  and  the  derivatives  of  any  curve  in  another  tangent-vector  set  rooted  at  the
same mW  to get the cosine of an angle. We might need that angle for navigation. The angle happens to
be

ArcCos

0.000001
0.000001

.
0.0000022
-0.0000015



Norm
0.000001
0.000001

 Norm
0.0000022
-0.0000015



 = 79.2869 Degree (4)

That angle is a metrical property that pertains only to that one point, and that's why it's called tan-
gent: the two derivative sets inhabit the same flat 2-space, where all our school math like dot product
works.  But  the  flat  2-space  is  glued  to  exactly  one  point  of  the  manifold.  The  curved  surface  of  the
manifold  falls  away  from  the  tangent  plane  on  all  sides,  making  metrical  calculations  difficult.  Dot
products of 2-vectors only work in flat 2-spaces with the basic orthogonal coordinate system and when
the vectors are rooted at the same point. 

Aside: Only Direction Matters?

Rewrite Equation 4:

ArcCos

0.000001
0.000001



Norm
0.000001
0.000001



.

0.0000022
-0.0000015



Norm
0.0000022
-0.0000015



 = 79.2868 Degree (5)

Notice that it’s the ArcCos of two normalized vectors. We might consider only normalized vectors if
we  were  concerned  only  with  dot  products.  In  other  words,  we  might  be  tempted  to  think  of

0.000001
0.000001

 and  

0.000001
0.000001

Norm
0.000001
0.000001



 as  equivalent.  But  doing  so  would  not  let  us  distinguish  vectors  by

magnitude, and we want to do that. 
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Any Old Chart Will Do

We have a composition ϕ◦c that yields lat and lon for any curve c. Let’s plot a couple of vectors against
a lat-lon coordinate grid. Then, let’s shear the grid and watch the coordinates of the vector tips change.
In the plot, the coordinate numbers are relative to the vector base, a point in the manifold where the
parameter  t  of  the  curve  c(t)  is  0.  Emphasis:  the  vectors  do  not  change:  they  are  geometric  entities
attached to the manifold at c(0), independent of the coordinate grid, that is, independent of the chart.
Only the coordinates of the vector tips change.

In[14]:= origin$ = {1, 1};

v1Tipx$ = , 2  + origin$;

v2Tipx$ =  3 , π + origin$;

v1$ = {Thick, Darker[Red], Arrow[{origin$, v1Tipx$}]};
v2$ = {Thick, Darker[Green], Arrow[{origin$, v2Tipx$}]};
originDot$ = Disk[origin$, 0.075];
textOffset$ = {0.35, 0.15};
With[{ncells = 5, xo = -1.2, yo = -0.45, xf = 2, yf = 1.025},

box$ = {White, Line[{{xo, yo}, {xf ncells, yo}}],
Line[{{xf ncells, yo}, {xf ncells, yf ncells}}],
Line[{{xf ncells, yf ncells}, {xo, yf ncells}}],
Line[{{xo, yf ncells}, {xo, yo}}]};

coordinateGrid$ =

Table[{Line[{{0, y}, {ncells, y}}], Line[{{x, 0}, {x, ncells}}]},
{x, Range[ncells + 1] - 1}, {y, Range[ncells + 1] - 1}]];

Manipulate[
T$ = ShearingTransform[θ, {1, 0}, {.5, 1}, origin$];
transformedV1Tipx$ = InverseFunction[T$][v1Tipx$];
transformedV2Tipx$ = InverseFunction[T$][v2Tipx$];
transformedOrigin$ = InverseFunction[T$][origin$];
Graphics[{box$,

GeometricTransformation[coordinateGrid$, T$],
v1$, v2$, originDot$, Text[Style[transformedV1Tipx$ - transformedOrigin$,

Darker[Red], Background  White], v1Tipx$ + textOffset$],
Text[Style[transformedV2Tipx$ - transformedOrigin$,

Darker[Green], Background  White], v2Tipx$ + textOffset$]
}, ImageSize  Large],

{θ, 0, π / 4.}]
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Out[22]=

θ

{0.499598, 2.52356}

{-1.47404, 4.74464}

Metric Tensor: Restoring the Dot Product

By shearing the grid, we introduce a continuum of new charts with non-orthogonal coordinates. The
vectors do not change, and their dot product should not change, too. That means the dot product can
not be defined simply as x1 x2 + y1 y2. That form obtains only in the original, basic, unsheared grid of
orthogonal coordinates, where the coordinates measure the lengths of the vector components. 

In  fact,  the  dot  product  should  not  depend  at  all  on  the  choice  of  chart.  It  should  work  not  only  in
sheared coordinates, but in curvilinear coordinates of any kind, so long as the chart doesn’t have any
singular structures, like poles, caustics, creases, etc., that is, any structure where a point in the mani-
fold does not have unambiguous coordinates. The transformation from the basic chart to the sheared
chart  doesn’t  have  any  such  bad  features  so  long  as  we  don’t  completely  collapse  it  to  a  line.  That
means that the transformation from the basic chart to the sheared chart is a function with an inverse.
Later, we’ll add the restriction that all derivatives of the transformation exist and and are well-behaved
(in open sets) both to and from the basic chart. In this example, the dot product must take into account
the shearing.

The general form we are looking for is

( x1 x2 ).
? ?
? ?

.
y1
y2

 (6)

where x1, x2, y1, y2 are coordinates of the vector tips in the chart. The matrix in the middle is the metric
tensor in the sheared coordinates. The values in the matrix depend on the choice of chart, but we shall
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see that the tensor itself is a geometrical entity of its own, like a vector, independent of chart. The clue
comes from the fact that we want the final value of the form to be independent of the shear, or, in fact,
of any choice of well-behaved chart or coordinate system. 

Our present job, though, is to find the matrix representation of the metric  tensor for any reasonably
sheared  chart.  The  ShearTransformation  must  contain  the  information  we  need  for  the  matrix.
Our job is to fish that information out.

The  machinations  above  were  designed  to  produce  a  pleasing  demonstration,  with  the  origin  dis-
placed from the lower-left corner. Those machinations are now getting in the way of analysis (they’re
forcing us into affine transformations, which are non-linear in the coordinates, and we don’t want them
now). Let’s get rid of the displacement. The highlighted lines reveal the metric tensor, and we’ll explain
it after the demonstration.
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In[23]:= v1x0$ = , 2 ;

v2x0$ =  3 , π;

v10$ = {Thick, Darker[Red], Arrow[{{0, 0}, v1x0$}]};
v20$ = {Thick, Darker[Green], Arrow[{{0, 0}, v2x0$}]};
originDot0$ = Disk[{0, 0}, 0.075];
With[{ncells = 4, xo = -.2, yo = -1, xf = 3, yf = 1.025},

box0$ = {White, Line[{{xo, yo}, {xf ncells, yo}}],
Line[{{xf ncells, yo}, {xf ncells, yf ncells}}],
Line[{{xf ncells, yf ncells}, {xo, yf ncells}}],
Line[{{xo, yf ncells}, {xo, yo}}]};

grid0$ = Table[{Line[{{0, y}, {ncells, y}}], Line[{{x, 0}, {x, ncells}}]},
{x, Range[ncells + 1] - 1}, {y, Range[ncells + 1] - 1}]];

Manipulate[
T0$ = ShearingTransform[θ, {1, 0}, {.5, 1}];
M0$ = TransformationMatrix[T0$]〚1 ;; 2, 1 ;; 2〛;
t10$ = InverseFunction[T0$][v1x0$];
t20$ = InverseFunction[T0$][v2x0$];
Graphics[{box0$,

GeometricTransformation[grid0$, T0$],
v10$, v20$, originDot0$,
Text[Style[t10$, Darker[Red], Background  White], v1x0$ + textOffset$],
Text[Style[t20$, Darker[Green], Background  White], v2x0$ + textOffset$],
Text[Style["Vector Tips Un-Sheared", Background  White], {7.5, 3.75}],
Text[Style[N@{t20$.M0$, M0$.t10$}, Background  White], {7.5, 3.25}],
Text[Style[" Naive Dot Product: " <>

ToString[t20$.t10$], Background  White], {7.5, 2.5}],
Text[Style["Metrical Dot Product: " <> ToString[t20$.M0$.M0$.t10$],

Background  White], {7.5, 2.0}],
Text[Style["Metric Tensor in sheared coordinates",

Background  White], {7.5, 1.5}],
Text[Style[M0$.M0$, Background  White], {7.5, 1.0}]

}, ImageSize  Large],
{θ, 0, π / 4.}]
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Out[29]=

θ

{1.87302, 1.83685}

{0.510604, 3.75232}

Vector Tips Un-Sheared


1.73205 3.14159
2.71828 1.41421



Naive Dot Product: 7.8488

Metrical Dot Product: 9.15109

Metric Tensor in sheared coordinates


1.33381 0.286643
0.286643 0.811333



Take a deep breath. Let’s explain what we see above. We’ll have to relate it to the code. 

First are the two vectors with some whimsically chosen components in the basic, unsheared, orthogo-
nal, Cartesian coordinate frame.

In[30]:= , 2 ;

 3 , π;

These  are  just  lists  of  numbers  in  the  code.  Mathematically,  they  are  column  vectors:  lists  of  lists
amounting to 2 rows and 1 column. They should be

In[32]:= {},  2  // MatrixForm

 3 , {π} // MatrixForm

Out[32]//MatrixForm=



2

Out[33]//MatrixForm=

3
π

Mathematica  finesses  this  point  (irritatingly),  so  we  shall  also,  for  now.  But  it  becomes  critical  for
understanding the mathematics later, when we introduce co-vectors as row vectors in the co-tangent
space. In the highlighted line of the demonstration, we emphasize the mathematical point by showing
an explicit transpose operation on t20$. This transpose does nothing on a flat list.
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Next is the shearing-transform function. When we apply that function to the constant coordinate-grid
lines,  we  get  Line  objects  that  follow  the  sheared  coordinate  axes,  which  have  the  same  constant
values in the sheared coordinates as in the orthogonal coordinates, but are mapped back to Mathemati-
ca’s  orthogonal  screen  coordinates.  The  numbers  returned  from
GeometricTransformation[grid0$, ShearingTransform[...]] are in orthogonal coordinates for
plotting,  so  we  deduce  that  the  shearing  transform  converts  sheared  coordinates  to  orthogonal
coordinates.

In[34]:= ShearingTransform[θ, {1, 0}, {.5, 1}]
Out[34]=

TransformationFunction
1. + 0.4 Tan[θ] 0.8 Tan[θ] 0
-0.2 Tan[θ] 1. - 0.4 Tan[θ] 0

0 0 1


We only want the upper-left block. The right column and the bottom row handle the affine bits of the
general transform, which we have eliminated to keep the vectors rooted at {0, 0}. That upper-left block
is the following:

In[35]:= TransformationMatrix[ShearingTransform[θ, {1, 0}, {.5, 1}]]〚1 ;; 2, 1 ;; 2〛 //

MatrixForm
Out[35]//MatrixForm=


1. + 0.4 Tan[θ] 0.8 Tan[θ]
-0.2 Tan[θ] 1. - 0.4 Tan[θ]



The inverse shearing transform converts orthogonal coordinates to sheared coordinates. The vectors
have constant components in the orthogonal coordinate. To get the sheared coordinates of the vec-
tors, apply the inverse shearing transform.

In[36]:= TransformationMatrix[InverseFunction[ShearingTransform[θ, {1, 0}, {.5, 1}]]]〚
1 ;; 2, 1 ;; 2〛 // Chop // FullSimplify // MatrixForm

Out[36]//MatrixForm=


1. - 0.4 Tan[θ] -0.8 Tan[θ]
0.2 Tan[θ] 1. + 0.4 Tan[θ]



Let the components of the vectors, i.e., lists of constant numbers, in the orthogonal frame be v1 and v2,
and let them be v1  and v2  in the sheared frame. If the shearing-transform matrix is M0, then we have
v1 =M0 v


1  and  v2 =M0 v


2.  These  calculations  are  shown  in  the  demonstration  as  “Vector  Tips  Un-

Sheared.” They should display as constants, but they’re the result of round-tripping constant compo-
nents in the orthogonal frame through the sheared frame where they’re not constant, then back again
to the same constants.

It should now be obvious that the shear-independent dot product is 

v1.v2 = v

1M0M0 v


2 (7)

and that the matrix representation of the metric tensor in the sheared coordinates is
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M0M0 (8)

Those  tensor  components  are  displayed  in  the  demonstration  and  they  depend  on  the  actual  shear.
Because  the  dot  product  in  Equation  7  is  independent  of  the  particular  shear,  we  deduce  that  the
metric  tensor  itself,  not  its  matrix  representation,  must  be  independent  of  the  shear  if  the  vectors
themselves, not their lists of components, are independent of the shear. We go one step further and
declare  that  if  the  vectors  are  geometrical  entities  independent  of  coordinate  system,  the  metric
tensor itself must be a geometrical entity independent of coordinate system. We will find out later
that it is a bilinear transformation, and we can regard that as a geometrical object.

Back to the Curves

We  have  one  uncountably  infinite  collection  of  curves,  all  with  the  same  2-vector  derivatives  as  one
another through some chart, and another uncountably infinite collection of curves, all with the same
2-vector derivatives as one another through the same chart, but different — not infinitesimally! — from
the  derivatives  in  the  first  collection.  We  can  calculate  the  angles  between  any  such  pair  of  curves
chosen any way we like without considering details of the curves and certainly without considering the
charts. So really, the sets of curves act just like vectors, so we just call them that. That's an honest
achievement. 

Definitions: Equivalence, Atlas, Partition
The  general  concept  of  a  set  of  things  that  have  something  in  common  is  an  equivalence  class.  An
equivalence  class  comprises  all  things  that  are  equivalent,  according  to  some  specific  definition  of
equivalence, and excludes all things that are not equivalent to any member of the class. For our pur-
poses, the word “class” is a synonym for “set,” but there are technical differences concerning logical
paradoxes in the theory of sets, deep waters we need not wade in here.

Our specific definition of equivalence in the summary table at the top of this tutorial says that all curves
with equal values and equal derivatives through some chart when t = 0 are equivalent to one another. We
don't have to name the one point where all the curves are equivalent. It's enough to say that any two
curves in a particular equivalence class have the same values and derivatives at t = 0. The value is the
point that they all go through. We don’t even have to name the chart, because all mutually compatible
charts produce the same equivalences, as discussed below. Any chart in the atlas, the set of all compati-
ble  charts,  will  do.  The  demonstration  above  about  dot  products  and  the  metric  tensor  are  the  first
clues.

Because all suitable curves have some value and some derivative, the equivalence partitions the set of
all suitable  curves, where suitable mean "differentiable through any reasonable chart at t = 0." Every
suitable curve is in exactly one equivalence class. That's what partition means: the set of all suitable
curves  is  broken  up  into  subsets  (equivalence  classes)  that  have  no  members  in  common  with  each
other; their mutual intersections are all empty. 

A standard notation for equivalence class is [c], where c is some representative member of the class, a
curve in our case, and the square brackets denote the class (or set, loosely) of all curves equivalent to c. 
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Metrical Distances: Geodesics
We’ve got angles and dot products down; let’s measure non-infinitesimal metrical distances. We want
metrical distances that are the shortest possible. The shortest distance between any two points on any
manifold  is  the  geodesic  distance,  and  the  curve  (set  of  points  in  the  manifold)  with  the  shortest
integrated distance is the geodesic between those two points. It’s sensible to say the geodesic curve
because  geodesics  are  unique,  at  least  up  to  some  technicalities.  Geodesic  curves  are  computed
through charts by solving certain differential equations.

On  the  spherical  Earth,  geodesics  are  great  circles.  Other  manifolds  in  common  use  for  the  Earth
include the ellipsoidal WGS84 and lumpy spherical harmonics. Geodesics on these manifolds follow the
ellipses  and  lumps.  They  are  not  circles  and  they  are  much  more  complicated  to  express.  But  they
harbor no new concepts, so won't help with the purpose of this tutorial, which is to present a simplified
example that any of us, including Richard Feynman, could play along mentally. 

The Haversine distance formula converts pairs of lat-lons from φ◦c to geodesic, great-circle distances
on a spherical globe (https://en.wikipedia.org/wiki/Haversine_formula). We won't derive it, just code it
up:

In[37]:= ClearAll[dhv];
dhv[{lat1_, lon1_}, {lat2_, lon2_}] :=

rEarth *

InverseHaversine[
Haversine[lat2 - lat1] +

Cos[lat1] Cos[lat2] Haversine[lon2 - lon1]];

Let’s see how it does between our favorite points in St. Louis and New Orleans. The API (not the GUI) at
“WhatThreeWords” gives us lat-lons for our two points:

In[39]:= UnitConvert[dhv[
{38.627008 °, -90.19941 °}, (* hope.school.hype *)

{29.95107 °, -90.071524 °} (* joins.slides.predict *)],
"miles"]

Out[39]=

599.494 mi

You can check this on-line at many sites, like http://www.csgnetwork.com/gpsdistcalc.html; it’s good
to at least three digits.

Leaving the Real World: Abstract Theory

Definition: Tangent Space
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The set of all tangent vectors (equivalence classes of curves) at a given point m in the manifold M is the
tangent space at m, denoted Tm M. It’s a set of equivalence classes, a set of sets, loosely. Each equiva-
lence class contains all the curves with the same values and first derivatives at that point and parame-
terized so that the curves, as functions, yield that point when their parameter t is zero.

That  entire  nugget  of  notation,  Tm M,  is  an  indivisible  unit.  This  is  the  first  example  where  modern
notation goes into unfamiliar territory for many engineers and scientists. We don't have any notations
like this in school mathematics. Try not to interpret  Tm M as Tm  times M or Tm  applied to M or as any-
thing else.

Tangent Space: Independent of Chart
We did not mention a chart in the definition of the tangent space, nor in the notation Tm M. We didn’t
forget  and  the  notation  isn’t  deficient.  While  we  need  a  chart  to  do  calculations,  the  equivalence
classes do not depend on choice of chart. Curves that are equivalent to one another under one chart φ1
will be still be equivalent to one another under any other chart φ2 so long as φ1 and φ2 are compatible
charts. The derivatives of all the curves in an equivalence class through φ1  are all mutually equal at m
and  t = 0.  Likewise  for  φ2,  though  derivatives  through  φ2  won’t  likely  be  equal  to  the  derivatives
through φ1. 

We don't give a proof, but a chart that didn't preserve equivalence of curves would mess up first deriva-
tives,  thus  would  not  be  compatible.  We’d  see  singularities,  cusps,  creases,  caustics,  divide-by-zero,
and gimbal lock defects going right through our point of interest mw ∈M. In practice, we don’t let our
charts do that. We "push the problems to the poles” or to other convenient places like the 26-th merid-
ian  West,  outside  our  open  sets,  and  then  we  don't  go  there.  That's  the  meaning  of  "compatible
charts," they don’t mess up derivatives.

Tangent Spaces are Vector Spaces
A vector space is an abstraction of ordinary intuition on Euclidean vectors as tuples of numbers. The
abstraction picks out just those features of ordinary vectors that suffice for linear algebra to work. We
want the elements of tangent spaces — equivalence classes of curves — to act just like vectors, so we
can apply the entire machinery of linear algebra on them. That’s why this section is important.

What  does  it  mean  for  equivalence  classes  of  curves  to  act  just  like  vectors?  It  means  you  can  add
equivalence classes of curves and multiply equivalence classes of curves by scalars. We’ll need artifi-
cial definitions of “add” and “multiply.” “Adding” equivalence classes of curves is not set union: it's a
special operation defined below. 

Begin with ordinary vectors: “ordered tuples of numbers that (1) can be added element-wise to yield
more vectors and (2) can be multiplied by numerical scale factors (scalars).” Abstract away four things:
the objects being added, the addition operation itself, the type of the scalars, and the multiplication
operation between scalars and vectors:

1. Replace “ordered tuples of real numbers” with abstract undefined objects.
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In our case, the abstract undefined objects will be equivalence classes of curves.

2. Replace "addition" with an artificial definition of "addition." We don't need the concept of "element-
wise."

The artificial definition of “addition” must produce a third equivalence class of curves, call it [c3], 
from two other equivalence classes of curves, call them [c1] and [c2]. Write [c3] = [c1] + [c2], where “+” 

stands for artificial addition. Don’t confuse it with any other “+“ operation that you know about. You 

can tell it’s the special one because it has an equivalence class of curves to the left and an 

equivalence class of curves to the right. It’s defined for only two inputs, creating one output, so we 

can’t (yet) write expressions like [ca] + [cb] + [cc]. 

However, we want the artificial definition of addition to act like ordinary vector addition, meaning 

four things:

2.1. commutativity of vector addition: [ca] + [cb] = [cb] + [ca] for any two equivalence classes [ca] and [cb] in 

Tm M. 

2.2. associativity of vector addition: [ca] + ([cb] + [cc]) = ([ca] + [cb]) + [cc] for any three equivalence classes in 

Tm M. Now we can write [ca] + [cb] + [cc].

2.3. existence of additive identity: there exists a unique equivalence class of curves 0 =
def

[c0] such that 
[ca] + 0 = 0 + [ca] for any equivalence class [ca] in Tm M.

2.4. existence of additive inverse: for any equivalence class of curves, [c], there exists an additive inverse, 
denoted -[c], such that [c] + (-[c]) = 0.

Those are four of the eight abstract axioms of a vector space that tangent vectors must satisfy for 
tangent spaces to be vector spaces. 

To “add” two tangent vectors (equivalence classes) in a tangent space, pick a chart φ (any 

compatible chart will do) and pick two representative curves, c1 and c2, one from each tangent 

vector (each equivalence class). Compute the derivatives r1 =
def d(φ◦c1) /dt t=0 and 

r2 =
def d(φ◦c2) /dt t=0. Those are n-dimensional Euclidean vectors, i.e., tuples of real numbers. We’re 

back in n where we know how to add vector-like tuples element-wise.

Are we done, yet? No, because we got a sum r3 = r1 + r2 of ordinary n-vectors in n, but we didn't get 
back to a curve c3, let alone to a tangent vector [c3], yet. We need a solution to the pair of equations

d(φ◦c3)

dt
t=0 = r1 + r2 (9)

c3(0) =m (10)

for c3. There are many solutions; we need to construct one or at least prove its existence. Consider 
the indefinite integral


d(φ◦c3)

dt
dt =  (r1 + r2)dt = C + (r1 + r2) t = (φ◦c3) (t) (11)

where C is the constant of integration and the last highlighted equality follows from the second 

fundamental theorem of calculus 

(http://mathworld.wolfram.com/SecondFundamentalTheoremofCalculus.html)

When t = 0, (φ◦c3) (0) must be φ (m) because we want c3(0) =m. Therefore, the constant of 
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integration C = φ (m). We now have, reversing the equality and substituting the definition of function 

composition

(φ◦c3) (t) = φ (c3(t)) = φ (m) + (r1 + r2) t (12)

All these computations are in nice, comfortable n where we know what we’re doing, but we have 

to get back to the manifold M, where we can’t do much. Did I say that all charts must be bijections, 
meaning invertible or reversible, one-to-one and onto? No? Check the line for "Coordinate Chart" in
the cheat sheet up top and notice the double arrow ↔ in the definition φ : U φ (U)⊂ n. I snuck 

that in on you, didn’t I? We didn't need it until now, but it guarantees the existence of an inverse 

chart, denoted φ-1, and means that we can take any result r ∈ n = φ (q) of applying φ to a point 
q ∈ U⊂M and get back q by applying the inverse chart φ-1(φ (q)) = q ∈ U⊂M (we can go the other 
way as well: φ φ-1(r) = r ∈ n). Well, we’ve got our curve, now: 

φ-1(φ◦c3) (t) = φ-1 φ (c3(t)) = c3(t) = φ-1  φ (m) + (r1 + r2) t  (13)

It must be in some equivalence class because it’s a curve and all curves are in some equivalence 

class, by partitioning. That equivalent class will be our new tangent vector [c3]. 

We don't know exactly how to calculate c3(t) without picking a chart, but we know that we can 

calculate it given any compatible chart. That’s slightly better than a mere existence proof.

To summarize, we define addition as follows (there is a lot of stacked notation, here):

[c3(t)] = φ-1 φ(m) + t×
d(φ◦c1)

dt
t=0 +

d(φ◦c2)

dt
t=0  (14)

where ct(t) and c2(t) are representative curves of [c1(t)] and [c2(t)], respectively.

This is an equation between equivalence classes, hence the square brackets on both sides. The rest 
is just the procedure we articulated, bypassing the temporary variables r1 and r2.

We could have constructed any curve for c3(t), say one with wiggles, but why bother? This one goes 

“straight” through m, at least in a coordinate sense, through the inverse chart, like our very first 
curve in Winona, Mississippi, way above. The following figure illustrates the procedure. Pick any two 

c1 and c2, no matter how wiggly, fly up to n through φ, add the vectors, then, for a bunch of t values 

around 0, jump back down to the manifold through φ-1
 to trace as much of c3(t) as you want:
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Commutativity, associativity, existence of the additive identity and additive inverse are trivially 

inherited from n through the inverse chart, and we’re done with addition.

3. replace numerical scalars with (different) abstract objects that only need to be member of some 

field. 

A field, in turn, is an abstraction of the scalars. The axioms for a field are listed here: 
http://mathworld.wolfram.com/Field.html.

In our case, we stick with real numbers for scalars. The reals are a field. So are the complex 

numbers, so all this stuff works in quantum theory.

4. Define multiplication λ[c] of a tangent vector [c] by a scalar λ ∈ F, F a field; for us, the reals.

4.1. associativity of scalar multiplication: λ(μ[c]) = (λμ)[c] for any two λ, μ ∈ F, and λμ invoking the 

multiplication law in F.

4.2. distributivity of scalar addition: (λ + μ)[c] = λ[c] + μ[c], with λ, μ ∈ F, with the left + invoking the scalar 
addition law in F, and with the right + invoking vector addition in the vector space.

4.3. distributivity of vector addition: λ([c1] + [c2]) = λ[c1] + λ[c2], with λ ∈ F and both + signs invoking vector 
addition. 

4.4. existence of identity for scalar multiplication: 1[c] = [c], with 1 ∈ F being the multiplicative identity of 
F.

These are all trivially inherited from the field  and from the destination vector space n  delivered by
the chart. It might be worth it for you to write out all the details.
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Vector-space  axioms  are  listed  at  Wolfram  MathWorld  (http://mathworld.wolfram.com/VectorS-
pace.html). 

A vector space is not the same thing as an abstract vector space (http://mathworld.wolfram.com/Ab-
stractVectorSpace.html); this is a case where we cannot use the word "abstract" loosely. 

If  that  isn’t  enough  abstraction  for  you,  look  into  modules  (http://mathworld.wolfram.com/Mod-
ule.html). We won’t need these for our manifolds, but we mention them again when we come to linear
maps, which are defined by certain axioms on modules. All vector spaces are modules, so we won’t get
lost. But some modules are not vector spaces, and such things show up in applications, not just in pure
mathematics. String theory and other exotic, speculative physics need these abstractions. 

Type Notation
Consider the following expression:

φ : U ⊂M n (15)

Read it as the logical proposition that “φ has type ‘function from subset U of M to the n-dimensional
real Euclidean space n.’” In general, 

f : X  Y (16)

means that f  has type “function from set X to set Y .” We might write

f ∈ X  Y (17)

to mean that f  is an element of the set of all functions from set X  to set Y , but it’s not a notation you’ll
see  often.  For  our  purposes,  there  is  no  difference  between  a  type  and  a  set.  In  programming  lan-
guages, there is a difference: types are the province of the compiler or language interpreter. Ordinary
code  doesn’t  manipulate  them  at  all.  Code  that  does  manipulate  types  is  one  kind  of  metaprogram-
ming, and many programming languages don’t support it at all. Of course, ordinary code can manipu-
late sets easily. A programming language that doesn’t let you manipulate some kind of representation
of a set of data, even if that representation is just an array, would be unacceptable. When implement-
ing a compiler, we implement types in the language we’re compiling using sets in the language of the
compiler itself.

There is much more to the distinction of types and sets. See https://cs.stackexchange.com/question-
s/91330/what-exactly-is-the-semantic-difference-between-set-and-type  for  instance.  But  the  intuition
above is enough for us.

A function f  from set X to set Y  sends elements x ∈ X to elements y ∈ Y , that is

y = f (x)

f  does  not  send  the  set  X  to  the  set  Y ,  that  is,  something  like  f (X)  is  not  yet  defined.  However,  this
notation  is  often  used  to  mean  { f (x) : x ∈ X }⊆ Y ,  that  is,  the  range  of  f ,  a  subset  of  Y .  Y  which  is  the
codomain of f . The range f (X) is a subset of the codomain Y .

Definition: Components of Tangent Vectors
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Let φ : U⊂M n be a chart for the manifold M, a function from an open subset U of M to the n-dimen-
sional real Euclidean vector space n. We must use open sets so that continuous derivatives are well
defined (that’s a premise of point-set topology; see reference [15]). For now, just intuit an open set as
one that doesn’t contain its boundary. The technicalities are non-trivial. 

That chart φ gives us real-number coordinates x ( j ) =def x(1), x(2), …, x(n) for any point m in U (the paren-

theses around the index j in an expression like x ( j)  helps us remember that we’re not raising the num-
ber x to the power j ).

Consider  the  function  composition  (φ◦c) :  n  for  some  representative  parameterized  curve  c.  Of
course, c belongs to a tangent vector (equivalence class of curves), a member of the tangent space Tm M
at m ∈ U. Write the n component functions of that function composition as 

(φ◦c)(1), (φ◦c)(2),…, (φ◦c)(n) (18)

We know how to compute derivatives, using ordinary calculus from  to n, of these composite func-
tions.  Evaluate  the  derivatives  t = 0  and  define  the  components  of  the  tangent  vector  that  (φ◦c)
represents as follows

v( j ) =
def d

dt
(φ◦c)( j ) t=0 (19)

They will be the same for every curve c in the tangent vector, justifying our calling them the compo-
nents  of  the  tangent  vector,  even  though  we  only  compute  them  for  a  representative  curve  c.  The
components v(1), v(2), …, v(n) are just ordinary n-vectors, tuples numbers in n. 

We have managed to convert abstract tangent vectors, equivalence classes of curves in the manifold M,
elements of the abstract tangent space Tm M, to ordinary n-vector tuples in n, where all our traditional
tools of calculus work. We simply had to pick a chart φ, the same chart that lets us convert points in the
manifold to n-vectors x ( j ), and a representative curve c. 

This is the connection between the modern, coordinate-free notation and the traditional, 19-century
notation  that  Einstein  and  everyone  else  used  and  is  documented  in  reference  [17],  the  book  from
which I learned this entire theory. The modern notation literally abstracts out the charts (by a literal
definition  of  the  verb  abstract  that  we  won’t  get  into).  In  the  old  notation,  we  can't  even  talk  about
points and vectors, let alone more advanced things like tensors and differential forms, without charts
and  chart-to-chart  transformations  and  the  superscripts  and  subscripts  coming  with  them.  The  old
notation is more cumbersome, but more explicit. The choice of which to use is a trade-off, at least until
we get to writing computer programs. Academics have, long since, made the decision for us. We can't
read contemporary papers without understanding the modern notation, but we can't write computer
programs  without  translating  it,  through  charts,  into  the  old  notation.  That's  what  this  tutorial  is  all
about.

Definition: Derivative of a Curve
Above, we define the derivative of a curve c through a chart φ, namely d(φ◦c) /dt t=0, to be a concrete
vector in n, the derivative of the representative curve c. We interpret the derivative notation as ordi-
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nary derivatives from calculus because the function φ◦c :  n, pronouced as “φ◦c is of type ‘func-
tion from the real numbers  to the n-dimensional, real Euclidean vector space n,’” and we already
know calculus for functions from  to n. 

Now,  define  the  notation  c ' (s)  to  mean  “the  tangent  vector  (equivalence  class  of  curves)  of  the  new
representative  curve  t c(s + t),  evaluated  at  t = 0.”  The  new  representative  curve  t c(s + t)
depends upon the old representative curve c and on a non-infinitesimal distance s. It’s a function from
the  parameter  t ∈   to  a  point  in  the  manifold,  c(s + t),  so  t c(s + t)  is  a  curve.  Its  tangent  vector
(equivalence class of curves at t = 0) belongs to the tangent space Ts M rooted at s. Thus it has a deriva-
tive d(φ◦ (t c(s + t))) /dt t=0 at s through some chart.

Remember that it doesn't make sense to directly differentiate a curve in the manifold because we don't
know  how  to  subtract  points  —  values  of  c  —  even  infinitesimally,  in  a  limit  expression  like
limh0 (c(t + h) - c(t)) /h.  We  provide  a  new  notation  c ' (s),  and  declare,  by  fiat,  that  it  means  a  whole
equivalence class of curves some non-infinitesimal parametric distance s from our original point. This
fiat is justified because we have found out that tangent spaces are independent of charts, so we don't
even need a chart to make this definition. We pick charts when we do calculations, but we don't need
or even want them at this abstract level.

Notation: Lambda Expressions, Anonymous Functions, 
Closures, Parameters, Dummy Variables, 
Arguments, Function Bodies, Free Variables

The notation t c (s + t) means "the function of t that equals c(s + t)." In programming languages, this
is a lambda expression or closure, because it "closes over" the variables c and s. It's an un-named or
anonymous  function;  we  can  only  talk  about  it  by  writing  it  out  again,  not  by  mentioning  its  name,
because it doesn’t have a name. 

The variable t is the parameter of the lambda expression t c(s + t); it occurs to the left of the func-
tion arrow . Notice this arrow looks different from the function arrow  in type expressions. It has a
“rear bumper.”

Parameters are sometimes called dummy variables because their names don't matter so long as they
don't collide with other names; u c(s + u) means exactly the same as t c(s + t), but not the same
as s c(s + s) or c c(s + c). 

The material to the right of the function arrow , c(s + t) in this case, is the body of the function. The
variable s is not a parameter; its value comes from somewhere else, yet the function body can refer to
it. Likewise c is here a variable that refers to some function named c that's defined (bound) outside the
lambda expression. Variables that are not parameters are free variables. We must interpret the body of
t c(s + t) as closing over both s and c, that is, getting their values from some environment not neces-
sarily written down.

This really is a terrible pun: inside the body of a function like t c(s + t), c is a variable that refers to or
evaluates to some function. How do we know the value of c is a function? Because the notation c(s + t)
means “apply the function c to the argument s + t.” Outside the body of t c(s + t), that same function
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has  a  name,  also  c.  If  you  change  the  value  of  c  to  some  other  function,  your  lambda  expressions
change meaning, depending on when the compiler assigns a value to the variable c when compiling the
body of the function t c(s + t). We could go even further, carefully distinguishing variables from the
names of variables, but that’s far enough for now, other than to note that some modern programming
languages like Clojure do just that, explicitly.

What's the argument s + t? It's the current value of the free variable s added to the current value of the
parameter t. 

There is a lot of delicate machinery behind a tiny expression like t c(s + t). You have to keep all this
straight in your head when you're programming or you get into a terrible pickle.

The key is to remember that there are only two ways to get non-constant data into the body of a function:
parameters and free variables. 

Walking Down the Curve

c(t) : M is a curve: a function from the real number t to a point in the manifold M.

c ' (s)  has  a  different  type:  c ' (s) : [t c(s + t)],  read  “c ' (s)  is  of  type  ‘equivalence  class  of  the  curve
(function) t c(s + t)’.” c ' (s) is a tangent vector, an equivalence class of curves. The square brackets
mean “equivalence class,” as usual.

The  tick  mark  suggests  a  derivative,  just  like  traditional  notation.  Up  to  now,  we  only  knew  how  to
compute derivatives through charts, as in d(φ◦c) /dt. Now we have a way to interpret the derivative of
a curve, even evaluated at some non-infinitesimal distance s from the home base of c(t) at t = 0. Walk c
over to c(s + t), set up a new equivalence class of a new anonymous curve function t c(s + t), evalu-
ated at t = 0 as we must always do when defining such equivalence classes, and enjoy your new tan-
gent vector c ' (s) at manifold point c(s), which could be a long way from manifold point c(0). 

Reference [14] later uses the notation dc /dt t=0 to mean c ' (s), throwing away the s. 

Linear Maps Amongst Tangent Spaces
Start with two manifolds, M and N, and consider a function f :MN that maps points in M to points in
N, shown at the bottom of the diagram immediately below. 

We’re  going  to  define  the  linear  map  Tm f : Tm M Tf (m) N  along  with  some  tricky  notation.  Just  take

Tm f  as  a  single,  whole  symbol  lump  denoting  a  linear  map.  Tm f  is  not  a  tangent  space  because  f
doesn’t denote a manifold because f  is not a capital letter. 

Because  we  know  that  the  tangent  spaces  Tm M  and  Tf (m) N  are  vector  spaces  and  linear  operations

make  sense  in  vector  spaces,  it  makes  total  sense  to  talk  about  linear  maps  between  vector  spaces.
These  would  be  abstract  linear  maps  (https://en.wikipedia.org/wiki/Linear_map),  defined  on  the
module  structure  of  tangent  spaces,  which  abstracts  even  the  vector-space  structure,  but  they  are
represented by matrices. We go through all the representation logic in this section, perhaps for the last
time. In the future, we just appeal to the vector-space structure of tangent spaces and safely pretend
that they are vectors as tuples of numbers and that linear maps are matrices as rectangular tables of
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numbers.

This function f must be differentiable, which means that it’s differentiable through (potentially differ-
ent) coordinate charts on both sides. Differentiation through charts yields ordinary Euclidean vectors in
m and n. m is now the dimension of the tangent vectors of M, all of the same dimension, and n is now
the dimension of the tangent vectors of manifold N. Previously, n meant the dimension of the tangent
vectors of M. We continue to use m to mean a point in the manifold M. Don’t get confused. Ordinary
multidimensional calculus works in Euclidean spaces, so we’re on concrete ground there.

Choose a representative curve c(t) : M in M, and let v ∈ Tm M be the corresponding tangent vector
(equivalence class of curves) at t = 0, as usual. With our fancy notation for “derivative of a curve,” we
may write v = c ' (0) = dc /dt t=0. That’s an equation on equivalence classes. We define the linear map
Tm f  so  that,  when  its  representative  n×m  matrix  is  applied  to  any  representative  m-dimensional
Euclidean vector in the equivalence class v ∈ Tm M, we get the corresponding representative n-dimen-
sional Euclidean vector in the equivalence class (Tm f ·v) ∈ Tf (m) N. We have managed to ground out the

abstractions in computational linear algebra on concrete matrices and (column) vectors.

We can calculate Jacobian matrices to represent such linear maps through coordinate charts: Jacobian
matrices of derivatives of coordinate-chart transformation functions (the old-fashioned way, see [17]).
To  be  crystal  clear,  an  n-dimensional  tangent  vector  (equivalence  class  of  curves),  Tm f ·v,  is  repre-
sented by a product of an n×m matrix of numbers and some representative m-dimensional Euclidean
vector-tuple  in  the  equivalence  class  v,  then  lifted  back  into  an  equivalence  class  in  Tf (m) N.  The  fact

that coordinate charts are differentiable bijections guarantees that representative Jacobians exist and
are non-singular (check this). It also guarantees that “nearby” points on the curve in M remain “nearby”
in  N.  Without  differentiability,  f  gives  us  no  reason  to  believe  in  “preservation  of  nearby-ness.”  In
general, f  could completely scramble points around. Remember “WhatThreeWords.”
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The  n-dimensional  vector  (Tm f ·v)  is  an  equivalence  class  of  curves  equivalent  to  the  representative
curve (f ◦c), a curve in N. That equivalence class is member of the tangent space Tf (m) N. Using our fancy

notation for "derivative of a curve," we may also write

Tm f ·v =
d(f ◦c)

dt
t=0 =

d

dt
f (c(t)) t=0 (20)

Again, that’s an equation of equivalence classes. Schematically, we may apply the chain rule

Tm f ·v =
df

dc

dc

dt
t=0 (21)

to see that df /dc can only mean “the linear map Tm f” because dc /dt t=0 is the tangent vector v ∈ Tm M.
We might even define this schema for the chain rule just so, because there is no other sensible interpre-
tation of df /dc (how do you compute an infinitesimal difference dc of curves?). Such a definition is in
keeping with our fancy notation v = dc /dt t=0, where we also finessed the infinitesimal difference dc of
curves. 

This decomposition demonstrates that Tm f ·v  does not depend on the particular curve chosen. For a
physicist-style plausibility argument, consider that all curves in Tm M behave identically, up to deriva-
tives of the first order, at point m ∈M.

The notation Tm f  is tricky because it’s too easy to think that Tm f  has something to do with Tm M, but it
doesn’t, much. Tm f  is a linear map, represented by an n×m matrix. The tangent spaces Tm M and Tf (m) N

are sets of equivalence classes, not much in common with matrices. It’s best to just take notations like
Tm f  or Tm M as indivisible lumps and not try to read much of anything into the individual parts T, m, f ,
and M. 

A Flippant Remark

On page 124, reference [14] flips out the following strange equation with no commentary, presumably
to test whether we’re paying attention and understanding the notation:
dc

dt
t=0 = T0 c ·1 (22)

What  could  this  mean?  On  the  right-hand  side,  T0 c ·1  must  be  an  instance  of  the  general  notation
Tm f ·v, a m×n linear map applied to an m-dimensional vector yielding an n-dimensional tangent vector
(equivalence  class  of  curves)  in  the  tangent  space  Tf (0) N  at  the  point  f (0).  That’s  consistent  with  our

understanding of dc
dt t=0 ≡ c ' (s) as a tangent vector from Section “Walking Down the Curve” above. 

The presence of c : M in the (f :MN)-slot of (T0 c ·1) = (Tm f ·v) forces M, the source manifold, to be
, and forces N, the target manifold, to be, for some other M, manifold M. That's ok; the source mani-
fold  is a manifold. All finite-dimensional Euclidean spaces are manifolds.

The 0 in the m-slot of (T0 c ·1) = (Tm f ·v) must be the 0 of . 

That  leaves  the  1  in  the  v-slot  of  (T0 c ·1) = (Tm f ·v).  The  dimension  of  ,  the  source  manifold,  is  1.
Therefore,  v  is  a  1-dimensional  tangent  vector  (equivalence  class  of  curves)  in  the  tangent  space
Tm M = T0 .  This  implies  that  the  symbol  1  means  "the  class  of  all  curves  at  0  in  ,  equivalent  to  a
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1-dimensional vector in  that has the single component 1." We defined components of tangent vec-
tors above by picking some chart φ. When we apply the linear map (m×1 matrix) T0 c to the 1-vector 1,
we get a tangent vector to the target manifold M at point 0. The equation asserts that the something
must be dc /dt t=0, which is the tangent vector c ' (s) : [t c(s + t)] t=0 = [c(s)]. Well, it can’t be anything
else.

Definition: Tangent Bundle
Now that we have a good idea how to map curves and vectors through f  from one point in m in one
manifold  M  to  another  point  f (m)  in  another  manifold  N,  it’s  time  to  extend  these  ideas  to  multiple
points (f  is not necessarily or even usually through a chart). We do this with the tangent bundle and the
ordinary chain rule.

The tangent bundle is the disjoint union of all the tangent spaces in M:

TM =  Tm M
m∈M

(23)

The disjoint union of sets is like the union with duplicates allowed. 

We must allow duplicates because some tangent spaces will be identical to one another. How can that
be? If all the curves in all the equivalence classes in one tangent space go through the same point, and
all the curves in all the equivalence classes in another tangent space go through a different point, how
can the two tangent spaces be identical? 

In  the  section  Equivalence  and  Partition,  when  defining  tangent  spaces,  we  wrote  "We  don't  have  to
name the one point where all the curves are equivalent." Well that explains it. We may suspect that two
tangent spaces go through different points and have everything else the same, but there is no way to
tell  just  by  looking,  structurally,  at  the  tangent  spaces  themselves:  they’re  just  sets  of  equivalence
classes of curves. We must actually evaluate at least one curve function in some tangent vector in each
tangent  space  to  find  out  whether  the  curves  go  through  the  same  point  or  different  points  in  the
manifold.  We  need  that  one  extra  piece  of  information  to  distinguish  the  tangent  spaces  that  are
otherwise identical, and that's exactly what a disjoint union will do. 

Duplicates are never allowed in a set; the union operation merges duplicates. “Union” won’t do. The
disjoint union, on the other hand, pairs an item with an arbitrary index and then forms the ordinary set
union  of  the  pairs.[16]  For  a  tangent  space,  the  index  might  just  as  well  be  the  point  m  that  all  the
curves in all the tangent vectors (equivalence classes) in the tangent space go through. We write the
disjoint union as an ordinary union of pairs.

TM = 
m∈M

(m, Tm M) (24)

We must be careful with notation: 

◼ TM is a set of pairs where each m appears at most once. In fact, it's a function from M to the as-yet-
un-named set of all Tm M. The best way to define function is just that: a set of pairs such that the first 
element of a pair occurs exactly once in the set of pairs. 

◼ Tm M is a set of equivalence classes that happen to act like vectors.
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Digressing to our tiling of Earth with Planck-sized patches, that’s a finite (though enormous) approxima-
tion of a manifold. It may help to conceptualize TM as a finite (though enormous) hash table of m to
Tm M.

TM is a 2 n-Dimensional Manifold

If  M  is  n-dimensional,  then  TM  is  2 n-dimensional.  Now  we  care  that  the  index  of  the  disjoint  union
defining TM actually identifies the point m as well as each tangent vector (equivalence class). The index
shouldn’t  be  completely  arbitrary,  like  a  random  number.  Choose  a  chart  φ.  With  it,  find  the  coordi-
nates x( j ) = x(1), x(2), …, x(n) of m and the components v( j ) = v(1), v(2), …, v(n) of any tangent vector in

Tm M. That’s enough for a full coordinate system in TM: just concatenate the coordinates of m to the
components of some vector v to get the 2 n-tuple

x(1), x(2), …, x(n), v(1), v(2), …, v(n) (25)

Treat the 2 n-tuples as coordinates of points in a new manifold structure: the differentiable structure
of TM. Figure out what derivatives, tangent spaces, and tangent bundles must be on top of the tangent
bundle TM. We’ll bypass a construction, appealing to intuition, but it will be important someday when
we get to Hamiltonian mechanics.

Definition: Natural Projection and Fiber Bundle
The natural projection, τM : TMM takes any pair in TM and returns m, the point where all the tangent
vectors attach. If the indices of the disjoint union are the points themselves, then the natural projec-
tion just returns the first element of any pair.

The inverse of the natural projection, τM
-1 :M TM, takes a point m and returns the tangent space Tm M.

Recall that tangent spaces are independent of charts, so there is just one Tm M for each point m in M.
The particular tangent space at m is the fiber of the tangent bundle TM at m. We can now give a name
to our formerly un-named set of all Tm M at all m ∈M: the fiber bundle.

Tf  and The Chain Rule
Next, we extend Tm f  from one point m to all points. Define the indivisible-lump notation Tf : TM TN
(not  Tf )  to  be  the  function  that  takes  some  tangent  space  Tm M ∈ TM  to  the  corresponding  tangent
space Tf (m) N ∈ TN. It must do so by choosing some m-dimensional vector v ∈ Tm M, finding the (n×m)-di-

mensional linear map Tm f , perhaps by computing the Jacobian of coordinate transformations through
a pair of charts, but who-cares-how in our abstract world, and producing the corresponding n-dimen-
sional  vector,  (Tm f ·v) ∈ Tf (m) N.  We  already  showed  this  construction  does  not  depend  on  choice  of

curve or chart, so we’re making headway. We’ve also started to characterize the dimensions of tangent
vectors and linear maps, taking advantage of the fact that we know they are vectors and linear maps.

By appeal to the Jacobians, the chain rule

T(g◦ f ) = Tg◦Tf (26)
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holds. A rigorous, abstract proof would appeal, instead, to abstract linear algebra, yet another formal
discipline. Sketchily, we would have to show that the chain rule holds for all suitable Jacobians and
can therefore be lifted into the abstract spaces. But any physicist or engineer has no qualms with this
theorem, and the advantages of the abstract notation are now evident. This is much shorter and more
elegant, if less obvious, than the corresponding theorem in the style of reference [17]. 

Future Tutorials
That’s enough to get started. In future tutorials, we cover more material from general manifold theory,
then move into Lagrangian and Hamiltonian mechanics on manifolds. Here are some teasers:

Definition: Diffeomorphism (TODO)

Definition: The Submanifold Property (TODO)

Hamiltonian Mechanics
φ : U k×n-k

and 

φ(U⋂ S) = φ(U)⋂ k×{0}

IntroductionToManifolds006.nb     41


