
Introduction To Differentiable

Manifolds
Brian Beckman
Dec 2023

“I can’t understand anything in general unless I’m carrying along in my mind a specific example and

watching it go. Some people [think] I’m following the steps mathematically, but that’s not what I’m

doing.”

— R. P. Feynman

Abstract
This tutorial offers a bridge between the abstract mathematics of manifolds and computational prac-
tice. Computational practice means writing simulation and control software in terms of matrices and
vectors. We offer elementary examples fully explained and illustrated at length.

Nowadays, some understanding of differential geometry is increasingly necessary even if your only
objective is to do calculations, not to do proofs. That’s because differential geometry has crept into
robotics, simulation, and computer games, where it supports much better numerical performance
than older approaches.[19][20] It has been essential in Physics since General Relativity in 1915 and
Gauge Theory in the 1950’s. Before that, it was an arcane discipline in pure mathematics. But it seems
that differential geometry in many dimensions rules the natural World, all the way from quarks (gauge
theory) through robots (Hamiltonian mechanics) to superclusters of galaxies and beyond (general-
relativistic cosmology).

Contemporary books and papers can be challenging. Many are written in highly abstract mathematical
style (proofs without examples), with more generality than needed for applications (unphysical topolo-
gies), and with unfamiliar notation. If you didn’t learn fiber bundles, exterior calculus, and Lie theory in
school and you want to catch up fast, this tutorial might be interesting to you. You’ll be equipped to
read papers without choking on things you’ve never heard of, and get through to the juicy bits where
we learn from the heavy math how to do calculations with matrices and vectors.

Introduction
In simulation and control, we integrate equations of motion. Numerical integration of the continuous
Euler-Lagrange equations has given way nowadays to discrete, conservative, geometric, variational
integration on Lie groups,[19] for the following reasons:

◼ Discretizing the Lagrangian and approximating action as a sum instead of discretizing the

continuous action integral produces better conservation of energy and momenta.

◼ Coordinate systems in three dimensions have essential singularities that cannot be eliminated. The

entire class of consequent phenomena can lead to failures of numerical integration in many

different ways.

◼ Quaternions and axis-angles eliminate singularities by double-covering the 2-sphere, but do not
mitigate non-conservation of momenta and energy. Frequent renormalization or very small time-
steps are expensive fixes, often too expensive.

◼ Integration in the Lie group SE(3) is a better fix for rigid bodies because it automatically conserves

momenta and energy.

The Lie groups needed for simulation and control are differentiable manifolds, abstract curved spaces
analyzed through differential geometry and topology.

Prerequisites
We assume linear algebra and multivariable calculus: typical undergraduate applied mathematics for
engineering and science. We do not assume topology, point-set topology, real analysis, tensors, exte-
rior algebra and calculus, differential forms, generalized Stokes’ theorem, Lie groups, Lie algebras, or
Hodge theory. We do not even assume basic concepts of pure mathematics, like equivalence class, set
theory, bijection, surjection, and partial function. If you already know topics, this tutorial may be too
slow for you.

The following terms should immediately bring to mind a concrete realization and a calculational
procedure, i.e., we assume you know how to write software with them: matrix, inverse, transpose,
determinant, column vector, row vector, divergence, gradient, curl, Jacobian, Hessian. We also assume
you know that column and row vectors are punned as flat lists in Mathematica.

References
1. Jack B Kuipers, Quaternions and Rotation Sequences, Princeton University Press, 1999.

2. Jeongseok Lee, Karen Liu, Frank C. Park, Siddhartha S. Srinivasa, A Linear-Time Variational
Integrator for Multibody Systems, 2018, https://arxiv.org/abs/1609.02898

2 IntroductionToManifolds006.nb

https://arxiv.org/abs/1609.02898

3. Ari Stern, Discrete Geometric Mechanics and Variational Integrators, 2006,
http://ddg.cs.columbia.edu/SIGGRAPH06/stern-siggraph-talk.pdf.

4. Ethan Eade, Lie Groups for 2D and 3D Transformations, 2017, http://ethaneade.com/lie.pdf.

5. NIST: Digital Library of Mathematical Functions, https://dlmf.nist.gov.

6. Brian C. Hall, Lie Groups, Lie Algebras, and Representations, Second Edition, 2015, Springer.

7. Guangyu Liu, Modeling, stabilizing conrol and trajectory tracking of a spherical inverted pendulum,
PhD thesis, 2007, University of Melbourne,
https://minerva-access.unimelb.edu.au/handle/11343/37225.

8. Wikipedia, Tennis-Racket Theorem, https://en.wikipedia.org/wiki/Tennis_racket_theorem.

9. Marin Kobilarov, Keenan Crane, Mathieu Desbrun, Lie Group Integrators for Animation and Control of
Vehicles, 2009 (https://www.cs.cmu.edu/~kmcrane/Projects/LieGroupIntegrators/paper.pdf).

10. Ari Stern, Mathieu Desbrun, Discrete Geometric Mechanics for Variational Time Integrators, 2006 (?).

11. Kenth Engø, On The BCH Formula in (3), https://www.researchgate.net/profile/Kenth_Engo-
Monsen2/publication/233591614_On _the _BCH-formula_in

_so3/links/004635199177f69467000000/On-the-BCH-formula-in-so3.pdf.

12. Alexander Van-Brunt, Max Visser, Explicit Baker-Campbell-Hausdorff formulae for some specific Lie

algebras, https://arxiv.org/pdf/1505.04505.pdf.

13. Wikipedia, Baker-Campbell-Hausdorff Formula, https://en.wikipedia.org/wiki/Baker% E2 %80 %93

Campbell % E2 %80 %93 Hausdorff_formula.

14. Jerrold E. Marsden, Tudor S. Ratiu, Introduction to Mechanics and Symmetry, Second Edition, 2002.

15. John H. Hubbard and Barbara Burke Hubbard, Vector Calculus, Linear Algebra, and Differential
Forms: A Unified Approach, 5th edition, http://matrixeditions.com/5thUnifiedApproach.html, 2015.

16. Paul R. Halmos, Naive Set Theory, 2015.

17. David Lovelock and Hanno Rund, Tensors, Differential Forms, and Variational Principles, 1975.

18. Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics: 2nd Edition, 1980.

19. Taeyoung Lee, Melvin Leok, and N. Harris McClamroch, Discrete Control Systems,
(https://arxiv.org/abs/0705.3868)

20. Taeyoung Lee, Melvin Leok, N. Harris McClamroch, Global Formulations of Lagrangian and

Hamiltonian Mechanics on Manifolds, Springer (https://a.co/d/0lTbL9t)

21. Tristan Needham, Visual Differential Geometry and Forms, https://a.co/d/9hoKekz.

22. xAct, Efficient tensor computer algebra for the Wolfram Language, http://xact.es/index.html.

Cheat Sheet
The following table summarizes chapter 4 of reference [14]. To keep it small, it is not self-contained,
but rather presented in very roughly the order of this tutorial to help you jump to various parts, also as
a reference to return to. Many items might not be understandable without forward reading. Reference

IntroductionToManifolds006.nb 3

http://ddg.cs.columbia.edu/SIGGRAPH06/stern-siggraph-talk.pdf
http://ethaneade.com/lie.pdf
https://dlmf.nist.gov
https://minerva-access.unimelb.edu.au/handle/11343/37225
https://en.wikipedia.org/wiki/Tennis_racket_theorem
https://www.researchgate.net/profile/Kenth_Engo-Monsen2/publication/233591614_On_the_BCH-formula_in_so3/links/004635199177f69467000000/On-the-BCH-formula-in-so3.pdf
https://www.researchgate.net/profile/Kenth_Engo-Monsen2/publication/233591614_On_the_BCH-formula_in_so3/links/004635199177f69467000000/On-the-BCH-formula-in-so3.pdf
https://www.researchgate.net/profile/Kenth_Engo-Monsen2/publication/233591614_On_the_BCH-formula_in_so3/links/004635199177f69467000000/On-the-BCH-formula-in-so3.pdf
https://arxiv.org/pdf/1505.04505.pdf
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
http://matrixeditions.com/5thUnifiedApproach.html

[14] is authoritative for details and in the case of errors in the table and in the rest of this document.
The red highlighted item is a particularly obtuse bit of notation, and we explain it at length in the body
of the tutorial.

NOTION NOTATION DEFINITION REMARKS

Manifold M , N abstract collection
of abstract points

adddifferentiable
structure

Coordinate Chart (U, φ) U⊂M , Uopen
φ : U↔ φ (U)⊂ n

φ(m) =

x1, x2,…, xn

OpenSet U , U' primitive from
topology

detailed
knowledge not
needed

Compatible Charts (U, φ), (U ′, φ′) φ′ ◦φ-1 φ (U⋂ U′)

isC∞; φ (U⋂ U′) and
φ′(U⋂ U′) are open

DifferentiableManifold Everym ∈ M is in
at least one chart

M is a union of
compatible charts

Differentiable Structure Maximal atlas Collection of all
compatible charts

Neighborhood φ-1 applied to
neighborhood inn

Hausdorff topology :
m ≠m ' 

∃ non-intersecting
neighborhoods inM

Equivalent curves c1(0) = c2(0)
(φ◦c1)′ (0) = (φ◦c2)′ (0)

c1 : M

c2 : M

for some chartφ

Tangent Vector v (m) Equivalence class
of curves

Equivalence Class [c (t)] All curveswith same
value andderivatives
through some chart
φ at t = 0

Tangent elsewhere
on a curve

∀ c(t), def c′(s) at c(s)
dc
dt t=0

c′(s) ∈ eqv. class
[(t c(s + t)) t=0]

finite distance
s down curve c(t)

Tangent Space TmM Space of all tangent
vectors atm ∈M

THEOREM : Tm M
is a vector space

Components of a
Vector

v i = d
dt
(φ◦c)i t=0 Superscript runs

over the dimensions
Each component
is a real number

Tangent Bundle TM =  Tm M Includes local dimension is 2 n ;

4 IntroductionToManifolds006.nb


m∈M coordinates and

components of
vectors

⊔ is disjoint union

Natural Projection τM : TMM
τM
-1(m) = Tm M

Returns attachment
point of a vector

τM
-1(m) is the fiber
of TM atm

Differentiable,
Derivative

With f :MN
Tm f : Tm M Tf (m) N

Tm f is a linearmap
i.e., amatrix, s.t.
Tm f ·v =

Tm f ·
dc
dt t=0 =

d
dt
f (c(t)) t=0

M andN are
manifolds

Diffeomorphism f :M N Bijective,
differentiable,
& diff ' ble inverse

donut &
coffee cup are
diffeomorphic

   

Motivating Example

Get Your Kicks on Route 55
Let M, a manifold, be a set of abstract points representing a part of the surface of the Earth between St.
Louis in the North and New Orleans in the South and wide enough for the Mississippi River. We call it a
manifold because it’s many-folded, that is, curved. Though this one doesn’t have many folds, more
general cases do.

This manifold, however, is sufficiently curved to be interesting and to illustrative. To start, M just a set
of points on the globe. There is obvious organization of the points. It is obvious to say that "Memphis is
between St. Louis and New Orleans" and "Interstate 55 roughly follows The River." But we don't yet
know how to be precise in those statements because of the curvature. We know Euclidean geometry,
Cartesian analytical geometry, and trigonometry, and we know they don’t work on curved surfaces. We
can’t calculate the distance from St. Louis to New Orleans simply by subtracting their latitude-longi-
tude coordinates. The math we know only works on flat surfaces. Can we relate the two? That’s the
topic of differentiable manifolds in a nutshell: relating sets of points on curved manifolds to flat,
Euclidean hyperplanes where we know how to calculate. Sometimes, the curved manifolds like the
globe have two dimensions. Sometimes, they have many more. The SU(3) group of quantum chromody-
namics is a manifold eight real dimensions (https://en.wikipedia.org/wiki/Special_unitary_group).

IntroductionToManifolds006.nb 5

6 IntroductionToManifolds006.nb

Definition: Parameterized Curve
Imagine a collection of parameterized curves that map real numbers (parameters) to points in the
manifold, the globe in our example. Denote one member of that collection as c. c is a function. The
value of that function, c(t), given a real number t, is a point m ∈M in the manifold. As t, a real number,
advances, c(t) names one point on the Earth’s surface, then another point nearby, then another even
further, and so on.

How do we “name” points in the manifold and how we decide what “nearby” means. Don’t say “lati-
tude and longitude!” just yet, because that’s a particular numerical scheme, a chart, and we’re not
there yet. There are lots of other ways to name points on the Earth’s surface.

Definition: Point
What’s a point? It’s smaller than a ten-foot square. It’s smaller than an inch. It’s smaller than an atom.
It’s smaller than an atomic nucleus.

Physics hints that we can’t measure anything smaller than the Planck length, about 10-33 cm, so that
will do. That’s really small, by the way: a hundred million trillion (1020) times smaller than an atomic
nucleus, which is about 10-13 cm across. If we can uniquely name any little Planck square, 10-33 cm on
a side, anywhere on the globe, could anyone ask for anything more in the real world?

Mathematicians, of course, reason outside the real world with uncountable infinities of infinitesimally
small points. Such reasoning is necessary for a rigorously logical understanding of calculus, but we
don't go that far in this example. We're trying to stay concrete. See ref [15] for a beautiful account of
calculus from a rigorously logical point of view. The abstract notation we’re explaining in this tutorial
assumes you have heard of that point of view, which is artificially and ironically called real analysis,
based on point-set topology. You don’t have to be proficient in those topics to do calculations.

WhatThreeWords: Unique Names for Ten-Foot Squares
The web site "WhatThreeWords.com" gives a unique name to every ten-foot square on the surface of
the Earth (it might not work very close to the North and South Poles).

Pick some point on the surface. We showed above that, for practical purposes, a point is a Planck
square. Pick a specific Planck-square in a specific nucleus of a specific atom in a specific USGS geodetic
marker in Winona, Mississippi, the seat of Montgomery County. "WhatThreeWords" has a unique name
for the ten-foot square that encloses our point. That name is "jokers.priced.pursuit" (http-
s://map.what3words.com/jokers.priced.pursuit).

We'll give the same name to our Planck-square: "jokers.priced.pursuit," or mW for short. Yes, we’re
using the same name for a single Planck square as for a ten-foot-square patch that contains 1071 other
Planck squares.

IntroductionToManifolds006.nb 7

https://map.what3words.com/jokers.priced.pursuit
https://map.what3words.com/jokers.priced.pursuit

The important point is that these three-word string-names contain no metrical information. Given two
string-names, it’s impossible to tell whether the corresponding ten-foot squares are adjacent or ten
thousand miles apart. From a user’s point of view, the names are randomly chosen.

WhatTwentyOneWords: Unique Names for Planck Squares
It turns out that a string of twenty-one words from a personal vocabulary of mine suffices to uniquely
name every one of about 56×1083 Planck squares that could tile the Earth, with a practical algorithm
that we could code up easily. Practically speaking, we could name points on the Earth to any level of
refinement or detail we want. We are not stuck with ten-foot precision.

Definition: Manifold
To a mathematician, a manifold is an uncountably infinite set with elaborate structure and rules of
abstract points of size exactly zero (in the limit). The purpose of the structure and rules is to make
linear algebra and ordinary calculus work so that any of us can do calculations on abstract and nearly
arbitrarily curved spaces! Calculus, however, works in Euclidean, n-dimensional vector spaces, n. The
structure and rules of manifolds let us set up Euclidean spaces almost anywhere on a manifold.

Aside: Do-It-Yourself Naming

8 IntroductionToManifolds006.nb

If you are not interested in how to name points and squares with strings of words, nor in my guesses
about how “WhatThreeWords” works, skip this section.

It’s interesting to figure out how “WhatThreeWords” might work. This is my guess.

There are a little fewer than 56×1012 ten-foot squares on Earth. The surface area of Earth is

4π r⊕
2 ≈ 197 million square miles, where r⊕ is the radius of Earth, about 3959 miles. Call it 200 million

square miles to get an overestimate.

In[1]:= UnitConvert Earth PLANET  surface area , "Miles"^2

Out[1]= 1.96937 × 108 mi2

Each square mile is 52802 = 27878400 square feet, call it 28 million. That makes 5600 trillion (million
million) square feet for the whole Earth, or about 5.6×1015.

In[2]:= UnitConvert Earth PLANET  surface area , "Feet"^2

Out[2]= 5.4903 × 1015 ft2

Each 10-foot square comprises 100 square feet, so divide 5600 trillion for a total of about 56×1012, 56
trillion squares.

56 × 1012 Unique Names

If we’re going to give 56×1012 squares each a unique name of three words, what size of vocabulary will

we need? About 56×1012
3

≈ 38258. That’s about twice the average adult’s vocabulary, according to
The Economist (https://www.economist.com/johnson/2013/05/29/lexical-facts). Science magazine
reckons that the average adult native speaker of English has a vocabulary of 42000 words counting
“lemmas” like “help,” “helpful,” “helpfulness,” and words that are easy to understand by guessing, like
“biblioklept” (https://www.sciencemag.org/news/2016/08/average-20-year-old-american-
knows-42000-words-depending-how-you-count-them). By either reckoning, the vocabulary of 38258
words necessary for “WhatThreeWords” is entirely reasonable.

WhatFourWords: Using My Own Dictionary

I can make my own version of “WhatThreeWords,” not an exact clone, because I don’t have their
dictionary, but I do have my own 15141 words that I collected for word games:

To get 56 trillion unique combinations, I need four of my words 151414 ≈ 5.25555×1016 is 900 times

more than enough, but 151413 ≈ 3.47107×1012 isn't enough). So my imaginary version of their web site
would have to be “WhatFourWords.”

IntroductionToManifolds006.nb 9

https://www.economist.com/johnson/2013/05/29/lexical-facts
https://www.sciencemag.org/news/2016/08/average-20-year-old-american-knows-42000-words-depending-how-you-count-them
https://www.sciencemag.org/news/2016/08/average-20-year-old-american-knows-42000-words-depending-how-you-count-them

Names for Planck Squares

We want to uniquely name every Planck square on Earth. How many of my words would we need?

A Planck length is 10-33 cm, and a Planck square is 10-66 cm2, or

In[3]:= UnitConvertQuantity1.0 * 10-66, "square cm", "square ft"

Out[3]= 1.07639 × 10-69 ft2

That means there are about 1069 Planck squares per square foot, or about 5600×1012+69 = 56×1083

Planck squares on the surface of the Earth. The logarithm, base 15141, of (56×1083) is about 20.27. I
need at least that many of my words to uniquely identify every Planck square on Earth. A string of
twenty-one of my words would be more than enough. Anyone, with a little effort, could even memorize
a few of these strings of twenty-one words.

We have a practical scheme for naming every Planck square on Earth: every point that is a hundred
million trillion times smaller than an atomic nucleus named with just twenty-one words in a string.

It's not crazy to imagine a "WhatTwentyOneWords" web site for uniquely naming every Planck square
on Earth. It is crazy to imagine a random assignment of names, because such would require a database
with 56×1083 rows, a lot more rows than there are electrons in the entire Universe (about 1080, http-
s://io9.gizmodo.com/5876966/what-if-every-electron-in-the-universe-was-all-the-same-exact-particle).
However, we could implement “WhatTwentyOneWords” by systematically numbering the Planck
squares, tiling the Earth in strips of constant latitude or an ascending spiral, or with clever Twarock-
Konestova or Caspar-Klug (soccer-ball) tilings (https://archive.bridgesmath-
art.org/2018/bridges2018-237.pdf), and then treating my words as numerals in radix 15141. We could
even implement that right here and now in this notebook, but maybe you'd like to do that on your own,
just for fun, of course.

It would not be secure. A dedicated hacker could discover our systematic scheme and then clone our
site. How "WhatThreeWords" protects their intellectual property is anyone's guess, but if I were they, I
might just use a random distribution and a database. It's just barely practical to have a database of 56
trillion items (e.g., InnoDB can do it). Lots of interesting crypto tricks like zero-knowledge proofs are
conceivable, too, but let’s get back on track with manifolds.

Curves near mW

We’re using the same name for the ten-foot square from “WhatThreeWords” and for our specific Planck
square in our specific atom of our specific geodetic marker in Winona, MS, but we won’t get confused.

Consider a bunch of parameterized curves, c(t), that all go through mW. Adjust their parameters so that
when t = 0, all the curves equal mW. The following picture illustrates three such curves.

10 IntroductionToManifolds006.nb

https://io9.gizmodo.com/5876966/what-if-every-electron-in-the-universe-was-all-the-same-exact-particle
https://io9.gizmodo.com/5876966/what-if-every-electron-in-the-universe-was-all-the-same-exact-particle
https://archive.bridgesmathart.org/2018/bridges2018-237.pdf
https://archive.bridgesmathart.org/2018/bridges2018-237.pdf

All these curves must always be, for any t ∈  whatever, in the manifold. That means they cannot wan-
der off up into the sky or below the ground. We can’t go paragliding or mining with “WhatThreeWords.”
But the curves can go in loops and whorls and knots, no problem.

Differentiable
The curves can go in loops and whorls and knots, but they must must be at least long enough to strad-
dle mW when the parameter t of any curve is near zero, either side of zero. And the curves must be
"differentiable" there, at t = 0. What could that mean?

The usual definition for derivative, when applied to a curve c(t) at any t could only be to take two
nearby points, c(t + h) and c(t), where h is small, subtract them, divide by h, and go to the limit,
limh0 (c(t + h) - c(t)) /h. That doesn't make sense because c(t + h) - c(t) can only mean "subtracting"
two points in the manifold and we have no idea what subtraction could mean in the manifold. How do
you subtract a point in St. Louis, say “hope.school.hype,”

IntroductionToManifolds006.nb 11

from a point in New Orleans, 600 miles away, say "joins.slides.predict?"

Even if two points are really close, say the lamppost "bottle.ruled.varieties" in St. Louis

12 IntroductionToManifolds006.nb

and the next lamppost at "heavy.beyond.speeds,"

IntroductionToManifolds006.nb 13

we don't know how to "subtract" them. We can subtract angles or vectors, but not points.

Definition: Chart
We need a chart, a way to convert points in the manifold to numerical things like angles or vectors.
We’re only going to work with a trivial chart to keep this example simple and easy, but take a look at
Wikipedia’s collection of map projections https://en.wikipedia.org/wiki/List_of_map_projections.
Coming up with charts is difficult and is, in fact, a principal problem for mapmakers and manifold
theorists. Many of these map projections were specially constructed in earlier times when people
calculated distances, headings, and areas by hand or even in their heads. Various map projections are
specialized for distances, angular headings, or areas, but can’t support all three, or even more than
one, efficiently. A human navigator may need several charts to get the job done. Many charts are set up
for physical measurements on flat paper with protractor, ruler, and compass. We still use those charts
in computers, just with virtual protractors, rulers, and compasses.

Distances: Coordinate and Metrical Distances
The web API (not necessarily the GUI) of “WhatThreeWords” implements a chart: you give it a three-
word name and it gives you back a latitude and longitude. Latitudes and longitudes won’t yield dis-
tances directly by subtraction, but we can compute purely formal sums and differences, called coordi-
nate distances. We’ll construct a slightly complicated function below that produces metrical distances

14 IntroductionToManifolds006.nb

https://en.wikipedia.org/wiki/List_of_map_projections

from lats and lons — actual feet and miles on the ground that you’d get from an odometer. We won’t
get into complicated charts like Wikipedia’s map projections. The purpose of this tutorial is to help you
appreciate manifolds from simplified examples, not to get you into all the details.

Definition: Open Sets (Trouble at the Poles)
Many charts of the Earth have trouble near the North and South Poles, but people don't ordinarily go to
either place, so cartographers often park troublesome bits at the poles. "WhatThreeWords" goes way
up in latitude, but I haven't found the North Pole, yet, because their display-maps don't show anything
up there and I can't see what I’m doing. The South Pole seems to be at "greenhouses.recommitting.mul-
tiplexes" because the maps go crazy there and the web app doesn't behave well. We shouldn't play
around where we know someone else's web app chokes up; that's a denial-of-service attack. So I gave
up at the first sign of trouble, but there was trouble. Maybe it’s fixed, now.

In manifolds, we work with open sets, a purely formal, logical notion in topology. Open sets make
calculus work by excluding troublesome bits. Our main goal, after all, is to make calculus work, so we
mention open sets frequently in the statements and proofs of theorems. You don’t need to know
topology to get through this tutorial, but you must resort to the formalities to strike out on your own.

Intuitions about open sets are notoriously misleading. Some sets can be both open and closed, and
some sets can be neither open nor closed. It took 300 years to make calculus rigorously logical, after all,
even though it was working well for physics and engineering from the days that Newton and Leibniz
invented it. In fact, there is evidence that Archimedes, almost 2000 years prior, had the inklings of
calculus (https://www.amazon.com/Archimedes-Codex-Revealing-Antiquitys-Scientist/d-
p/030681580X). See references [15] and [18] if you’re driven to know the topology behind calculus.

For applications in classical physics and engineering, the example of "trouble at the poles" is the
intuition needed to understand an open set. You can go near a pole, and maybe inch a little nearer, and
a littler nearer, but eventually you'll reach the limits of some practical computation and that will be the
end of your session. You might as well have hit the excluded point dead-on.

Definition: Dimension
Any chart on the Earth must let us convert three-word names or features like lampposts to pairs of
numbers. We can't do with fewer than two numbers per point, and three wouldn't help. We’re near the
Mississippi River and we’re not paragliding or mining. The Earth manifold represented by any chart is
two-dimensional, exactly two-dimensional. Likewise, any chart of the Lie Group SU(3) must have
exactly eight dimensions.

Definition: Derivative of a Curve Through a Chart
We can’t compute derivatives of the curves, but we can compute derivatives of “well-behaved” charts
composed with curves. Charts return pairs of real numbers, and we know how to compute derivatives
of functions from one real parameter, t, to two real numbers, lat and lon. We speak of the derivative of

IntroductionToManifolds006.nb 15

https://www.amazon.com/Archimedes-Codex-Revealing-Antiquitys-Scientist/dp/030681580X
https://www.amazon.com/Archimedes-Codex-Revealing-Antiquitys-Scientist/dp/030681580X

a curve through a chart. What are the derivatives of one of our curves c(t) through the lat-lon chart φ?
Write the derivatives as d(φ◦c) /dt, but that's still too abstract. We want our curve c(t) to go through
mW, ///jokers.priced.pursuit , when the parameter t = 0.

The value of the chart at any point of the manifold is a tuple of numbers called the coordinates of the
point in that chart. Charts are also called coordinate systems for this reason. It’s best to think of charts
as functions, however, that convert abstract points on the manifold into tuples of real numbers. We
then think of these tuples as members of n, ordinary, flat, Euclidean space, where we know how to
calculate. Incidentally, the whole machinery also works in the complex numbers, essential for quan-
tum physics, but we’re not going there in this tutorial.

The web API of “WhatThreeWords” gives the coordinates of ///jokers.priced.pursuit as
(lat = 33.488883, lon = -89.731397). That’s not nearly the 34 or 35 decimal places we’d need for a
Planck square, but let’s see how precise it is. One increment of latitude in the last place will be about
4.3 inches, not bad:

In[4]:= rEarth = UnitConvert Earth PLANET  average radius , "inch" *

(33.488884 - 33.488883) °

Out[4]= 4.37776 in

At that latitude, one increment-in-last-place of longitude, using easy spherical trigonometry, is about

In[5]:= rEarth * Cos[33.488883 °] (-89.731397 + 89.731398) °

Out[5]= 3.65102 in

Definition: Function Composition
The symbol φ◦c is a function composition and means “a new function that feeds the output of one old
function, the curve c, to the input of another old function, the chart φ.” Read the symbol φ◦c as “φ
[phi] compose c” or “ϕ on c.” We stress that the new composition φ◦c denotes one new function made
up from two old functions, φ and c.

We could make our curve c return string-names from "WhatThreeWords" and then use their web API as
our chart φ to look up lats and lons. That would be fun and even practical, but would only give us
precision to ten feet. At least near mW, we can get results good to about 5 inches. Going for higher
precision comes at the cost of making our curve c return lats and lons and our chart φ do nothing, or,
better stated, be the trivial chart.

All that talk about three-word names for nothing? No, because we could still do it that way, and we
might have to do something like that in other applications. For the purposes of this example, to give
you something easy to remember, a do-nothing chart φ and curves that “cheat” by giving lat-lons will
be OK because we're only interested in the derivative of the composition φ◦c, namely d(φ◦c) /dt. If we
were to use the string-form curve c, we'd have a lot more work to do with the chart, beating on the web

16 IntroductionToManifolds006.nb

API of "WhatThreeWords" to figure out how tiny increments in t lead to tiny increments in φ◦c. That
wouldn’t be nice to beat on their web site. If they’re smart, they’ll notice we’re doing that and throttle
our web access or even demand money! Let’s not.

What Does “Nearby” Mean?
We know how to take two lat-lons and tell whether they’re nearby or not: look at the differences in the
last place of their decimal expansions. Can we tell whether two points on the manifold are nearby? Not
without a chart. This observation begs the question of “how do we construct a curve purely on the
manifold, where nearby parameters t + h and t yield nearby points on the manifold?” We have to back
into it from a chart. We’d have to construct something with sensible values for φ◦c(t), then apply the
inverse chart function ϕ-1

 to get something on the manifold M.

A First Curve
We need a curve c1 to specify nearby points in the manifold for nearby values of t, where we under-
stand "nearby" to be increments in last place shown above. Let one increment of t correspond to
0.000001 degree — about five inches — in each of lat and lon for any t. To make sure that our c goes
through mW when t = 0, write

ϕ◦c(t) =
33.488883 + 0.000001 t
-89.731397 + 0.000001 t (1)

In[6]:= ϕc1$[t_] := {{33.488883 + 0.000001 t}, {-89.731397 + 0.000001 t}};

That's our do-nothing chart composed with a particular c curve, a very boring curve that goes com-
pletely straight, but just one of uncountably many. The derivative of φ◦c evaluated at t = 0 is a con-
stant (that’s what “completely straight” means):
d(φ◦c)

dt
t=0 =

0.000001 °
0.000001 °

(2)

In[7]:= D[ϕc1$[t], t] // MatrixForm
Out[7]//MatrixForm=

1. × 10-6

1. × 10-6

A Second Curve
Imagine another curve c2 that goes through mW but wiggles in some way (through the chart) with lat
and lon away from that point:

ϕ◦c(t) =
33.488883 + 0.000001 t + .000042 

Sin[t]
t

- 1

-89.731397 + 0.000001 t*Cos[0.90 t]2
(3)

IntroductionToManifolds006.nb 17

In[8]:= ϕc2$[t_] := 33.488883 + 0.000001 t + .000042
Sin[t]

t
- 1 ,

-89.731397 + 0.000001 * t * Cos[0.90 t]2;

That’s another curve through the chart. The composition has the same value and derivatives at mw as
does the composition with the boring, straight curve. The new curve is just another one of the uncount-
ably many that have the same value and derivatives at mW.

Here are plots, showing the wiggles, of the lat and lon parts of that new composition ϕ◦c(t) around
t = 0. Notice the very fine resolution of the vertical axes. The wiggles are small.

In[9]:= Plot[ϕc2$[t]〚1〛, {t, -10, 10}, Frame  True, FrameLabel  {{"lat [degree]", ""},
{"t", "Latitude component of second curve composed with φ"}}]

Out[9]=

-10 -5 0 5 10

33.4888

33.4888

33.4888

33.4889

33.4889

33.4889

t

la
t[
de
gr
ee

]

Latitude component of second curve composed with φ

In[10]:= Plot[ϕc2$[t]〚2〛, {t, -10, 10}, Frame  True, FrameLabel  {{"lon [degree]", ""},
{"t", "Longitude component of second curve composed with φ"}}]

Out[10]=

-10 -5 0 5 10

-89.7314

-89.7314

-89.7314

-89.7314

t

lo
n
[d
eg
re
e]

Longitude component of second curve composed with φ

Here they are together, making loops and whorls and knots. In this next plot, we can’t see the parame-
ter t directly, but this is roughly what the curve looks like on the ground.

18 IntroductionToManifolds006.nb

In[11]:= ParametricPlot[Reverse@ϕc2$[t], {t, -10, 10},
FrameLabel  {{"lat [degree]", ""}, {"lon [degree]",

"Second curve composed with φ, North UP"}}, Frame  True, AspectRatio  1]
Out[11]=

-89.7314 -89.7314 -89.7314 -89.7314

33.4888

33.4888

33.4888

33.4889

33.4889

33.4889

lon [degree]

la
t[
de
gr
ee

]

Second curve composed with φ, North UP

Definition: Tangent Vector
Even though our two curves c1 and c2 behave very differently when t is not zero — one goes straight
and the other one wiggles — they are indistinguishable, at least as to value and derivatives through the
chart, when t = 0. Here is the proof that the derivatives of ϕ◦c2 are indistinguishable from the deriva-

tives of ϕ◦c1, which we know to be
0.000001 °
0.000001 °

. We must take a limit to prevent division by zero:

In[12]:= D[ϕc2$[t], t] // FullSimplify // MatrixForm
Out[12]//MatrixForm=

1. × 10-6 +
0.000042 t Cos[t]-0.000042 Sin[t]

t2

5. × 10-7 + 5. × 10-7 Cos[1.8 t] - 9. × 10-7 t Sin[1.8 t]

In[13]:= Limit[D[ϕc2$[t], t], t  0] // MatrixForm
Out[13]//MatrixForm=

1. × 10-6

1. × 10-6

We begin by simply defining the words tangent vector to mean the set of all curves that are indistinguish-
able as to value and first derivatives through some chart at a certain point with parameter t = 0. Don’t go

IntroductionToManifolds006.nb 19

crazy trying to think how a set of curves could be called a vector, when you know full well that a vector
is a tuple of numbers or an arrow pointing from one point to another, not a set of curves! We could use
words other than “tangent vector,” like blueberry blancmange, but we give some discussion to explain
why the words tangent vector are sensible, very sensible.

The two curves we wrote are two elements of the tangent-vector-as-a-set. We can come up with many
more. The number of equivalent curves is uncountable: just change the hard-coded numbers 0.00042
and 0.90 by small, real-number amounts to get new, different curves. The real numbers are uncount-
able. The values and derivatives of every curve in the same tangent-vector set as our two curves are the

same mW and the same
0.000001
0.000001

 at t = 0.

It makes sense to lump all the curves with the same values and the same derivatives into one collec-
tion, and it makes a twisted kind of sense to call the collection THE tangent vector. Consider another
collection of curves with the same value mW as the first collection, but different derivatives through the

chart, say
0.0000022
-0.0000015

. We really can compute dot products between the derivatives of any curve in

one tangent-vector set and the derivatives of any curve in another tangent-vector set rooted at the
same mW to get the cosine of an angle. We might need that angle for navigation. The angle happens to
be

ArcCos

0.000001
0.000001

.
0.0000022
-0.0000015



Norm
0.000001
0.000001

 Norm
0.0000022
-0.0000015



 = 79.2869 Degree (4)

That angle is a metrical property that pertains only to that one point, and that's why it's called tan-
gent: the two derivative sets inhabit the same flat 2-space, where all our school math like dot product
works. But the flat 2-space is glued to exactly one point of the manifold. The curved surface of the
manifold falls away from the tangent plane on all sides, making metrical calculations difficult. Dot
products of 2-vectors only work in flat 2-spaces with the basic orthogonal coordinate system and when
the vectors are rooted at the same point.

Aside: Only Direction Matters?

Rewrite Equation 4:

ArcCos

0.000001
0.000001



Norm
0.000001
0.000001



.

0.0000022
-0.0000015



Norm
0.0000022
-0.0000015



 = 79.2868 Degree (5)

Notice that it’s the ArcCos of two normalized vectors. We might consider only normalized vectors if
we were concerned only with dot products. In other words, we might be tempted to think of

0.000001
0.000001

 and

0.000001
0.000001

Norm
0.000001
0.000001



 as equivalent. But doing so would not let us distinguish vectors by

magnitude, and we want to do that.

20 IntroductionToManifolds006.nb

Any Old Chart Will Do

We have a composition ϕ◦c that yields lat and lon for any curve c. Let’s plot a couple of vectors against
a lat-lon coordinate grid. Then, let’s shear the grid and watch the coordinates of the vector tips change.
In the plot, the coordinate numbers are relative to the vector base, a point in the manifold where the
parameter t of the curve c(t) is 0. Emphasis: the vectors do not change: they are geometric entities
attached to the manifold at c(0), independent of the coordinate grid, that is, independent of the chart.
Only the coordinates of the vector tips change.

In[14]:= origin$ = {1, 1};

v1Tipx$ = , 2  + origin$;

v2Tipx$ =  3 , π + origin$;

v1$ = {Thick, Darker[Red], Arrow[{origin$, v1Tipx$}]};
v2$ = {Thick, Darker[Green], Arrow[{origin$, v2Tipx$}]};
originDot$ = Disk[origin$, 0.075];
textOffset$ = {0.35, 0.15};
With[{ncells = 5, xo = -1.2, yo = -0.45, xf = 2, yf = 1.025},

box$ = {White, Line[{{xo, yo}, {xf ncells, yo}}],
Line[{{xf ncells, yo}, {xf ncells, yf ncells}}],
Line[{{xf ncells, yf ncells}, {xo, yf ncells}}],
Line[{{xo, yf ncells}, {xo, yo}}]};

coordinateGrid$ =

Table[{Line[{{0, y}, {ncells, y}}], Line[{{x, 0}, {x, ncells}}]},
{x, Range[ncells + 1] - 1}, {y, Range[ncells + 1] - 1}]];

Manipulate[
T$ = ShearingTransform[θ, {1, 0}, {.5, 1}, origin$];
transformedV1Tipx$ = InverseFunction[T$][v1Tipx$];
transformedV2Tipx$ = InverseFunction[T$][v2Tipx$];
transformedOrigin$ = InverseFunction[T$][origin$];
Graphics[{box$,

GeometricTransformation[coordinateGrid$, T$],
v1$, v2$, originDot$, Text[Style[transformedV1Tipx$ - transformedOrigin$,

Darker[Red], Background  White], v1Tipx$ + textOffset$],
Text[Style[transformedV2Tipx$ - transformedOrigin$,

Darker[Green], Background  White], v2Tipx$ + textOffset$]
}, ImageSize  Large],

{θ, 0, π / 4.}]

IntroductionToManifolds006.nb 21

Out[22]=

θ

{0.499598, 2.52356}

{-1.47404, 4.74464}

Metric Tensor: Restoring the Dot Product

By shearing the grid, we introduce a continuum of new charts with non-orthogonal coordinates. The
vectors do not change, and their dot product should not change, too. That means the dot product can
not be defined simply as x1 x2 + y1 y2. That form obtains only in the original, basic, unsheared grid of
orthogonal coordinates, where the coordinates measure the lengths of the vector components.

In fact, the dot product should not depend at all on the choice of chart. It should work not only in
sheared coordinates, but in curvilinear coordinates of any kind, so long as the chart doesn’t have any
singular structures, like poles, caustics, creases, etc., that is, any structure where a point in the mani-
fold does not have unambiguous coordinates. The transformation from the basic chart to the sheared
chart doesn’t have any such bad features so long as we don’t completely collapse it to a line. That
means that the transformation from the basic chart to the sheared chart is a function with an inverse.
Later, we’ll add the restriction that all derivatives of the transformation exist and and are well-behaved
(in open sets) both to and from the basic chart. In this example, the dot product must take into account
the shearing.

The general form we are looking for is

(x1 x2).
? ?
? ?

.
y1
y2

 (6)

where x1, x2, y1, y2 are coordinates of the vector tips in the chart. The matrix in the middle is the metric
tensor in the sheared coordinates. The values in the matrix depend on the choice of chart, but we shall

22 IntroductionToManifolds006.nb

see that the tensor itself is a geometrical entity of its own, like a vector, independent of chart. The clue
comes from the fact that we want the final value of the form to be independent of the shear, or, in fact,
of any choice of well-behaved chart or coordinate system.

Our present job, though, is to find the matrix representation of the metric tensor for any reasonably
sheared chart. The ShearTransformation must contain the information we need for the matrix.
Our job is to fish that information out.

The machinations above were designed to produce a pleasing demonstration, with the origin dis-
placed from the lower-left corner. Those machinations are now getting in the way of analysis (they’re
forcing us into affine transformations, which are non-linear in the coordinates, and we don’t want them
now). Let’s get rid of the displacement. The highlighted lines reveal the metric tensor, and we’ll explain
it after the demonstration.

IntroductionToManifolds006.nb 23

In[23]:= v1x0$ = , 2 ;

v2x0$ =  3 , π;

v10$ = {Thick, Darker[Red], Arrow[{{0, 0}, v1x0$}]};
v20$ = {Thick, Darker[Green], Arrow[{{0, 0}, v2x0$}]};
originDot0$ = Disk[{0, 0}, 0.075];
With[{ncells = 4, xo = -.2, yo = -1, xf = 3, yf = 1.025},

box0$ = {White, Line[{{xo, yo}, {xf ncells, yo}}],
Line[{{xf ncells, yo}, {xf ncells, yf ncells}}],
Line[{{xf ncells, yf ncells}, {xo, yf ncells}}],
Line[{{xo, yf ncells}, {xo, yo}}]};

grid0$ = Table[{Line[{{0, y}, {ncells, y}}], Line[{{x, 0}, {x, ncells}}]},
{x, Range[ncells + 1] - 1}, {y, Range[ncells + 1] - 1}]];

Manipulate[
T0$ = ShearingTransform[θ, {1, 0}, {.5, 1}];
M0$ = TransformationMatrix[T0$]〚1 ;; 2, 1 ;; 2〛;
t10$ = InverseFunction[T0$][v1x0$];
t20$ = InverseFunction[T0$][v2x0$];
Graphics[{box0$,

GeometricTransformation[grid0$, T0$],
v10$, v20$, originDot0$,
Text[Style[t10$, Darker[Red], Background  White], v1x0$ + textOffset$],
Text[Style[t20$, Darker[Green], Background  White], v2x0$ + textOffset$],
Text[Style["Vector Tips Un-Sheared", Background  White], {7.5, 3.75}],
Text[Style[N@{t20$.M0$, M0$.t10$}, Background  White], {7.5, 3.25}],
Text[Style[" Naive Dot Product: " <>

ToString[t20$.t10$], Background  White], {7.5, 2.5}],
Text[Style["Metrical Dot Product: " <> ToString[t20$.M0$.M0$.t10$],

Background  White], {7.5, 2.0}],
Text[Style["Metric Tensor in sheared coordinates",

Background  White], {7.5, 1.5}],
Text[Style[M0$.M0$, Background  White], {7.5, 1.0}]

}, ImageSize  Large],
{θ, 0, π / 4.}]

24 IntroductionToManifolds006.nb

Out[29]=

θ

{1.87302, 1.83685}

{0.510604, 3.75232}

Vector Tips Un-Sheared


1.73205 3.14159
2.71828 1.41421



Naive Dot Product: 7.8488

Metrical Dot Product: 9.15109

Metric Tensor in sheared coordinates


1.33381 0.286643
0.286643 0.811333



Take a deep breath. Let’s explain what we see above. We’ll have to relate it to the code.

First are the two vectors with some whimsically chosen components in the basic, unsheared, orthogo-
nal, Cartesian coordinate frame.

In[30]:= , 2 ;

 3 , π;

These are just lists of numbers in the code. Mathematically, they are column vectors: lists of lists
amounting to 2 rows and 1 column. They should be

In[32]:= {},  2  // MatrixForm

 3 , {π} // MatrixForm

Out[32]//MatrixForm=



2

Out[33]//MatrixForm=

3
π

Mathematica finesses this point (irritatingly), so we shall also, for now. But it becomes critical for
understanding the mathematics later, when we introduce co-vectors as row vectors in the co-tangent
space. In the highlighted line of the demonstration, we emphasize the mathematical point by showing
an explicit transpose operation on t20$. This transpose does nothing on a flat list.

IntroductionToManifolds006.nb 25

Next is the shearing-transform function. When we apply that function to the constant coordinate-grid
lines, we get Line objects that follow the sheared coordinate axes, which have the same constant
values in the sheared coordinates as in the orthogonal coordinates, but are mapped back to Mathemati-
ca’s orthogonal screen coordinates. The numbers returned from
GeometricTransformation[grid0$, ShearingTransform[...]] are in orthogonal coordinates for
plotting, so we deduce that the shearing transform converts sheared coordinates to orthogonal
coordinates.

In[34]:= ShearingTransform[θ, {1, 0}, {.5, 1}]
Out[34]=

TransformationFunction
1. + 0.4 Tan[θ] 0.8 Tan[θ] 0
-0.2 Tan[θ] 1. - 0.4 Tan[θ] 0

0 0 1


We only want the upper-left block. The right column and the bottom row handle the affine bits of the
general transform, which we have eliminated to keep the vectors rooted at {0, 0}. That upper-left block
is the following:

In[35]:= TransformationMatrix[ShearingTransform[θ, {1, 0}, {.5, 1}]]〚1 ;; 2, 1 ;; 2〛 //

MatrixForm
Out[35]//MatrixForm=


1. + 0.4 Tan[θ] 0.8 Tan[θ]
-0.2 Tan[θ] 1. - 0.4 Tan[θ]



The inverse shearing transform converts orthogonal coordinates to sheared coordinates. The vectors
have constant components in the orthogonal coordinate. To get the sheared coordinates of the vec-
tors, apply the inverse shearing transform.

In[36]:= TransformationMatrix[InverseFunction[ShearingTransform[θ, {1, 0}, {.5, 1}]]]〚
1 ;; 2, 1 ;; 2〛 // Chop // FullSimplify // MatrixForm

Out[36]//MatrixForm=


1. - 0.4 Tan[θ] -0.8 Tan[θ]
0.2 Tan[θ] 1. + 0.4 Tan[θ]



Let the components of the vectors, i.e., lists of constant numbers, in the orthogonal frame be v1 and v2,
and let them be v1 and v2 in the sheared frame. If the shearing-transform matrix is M0, then we have
v1 =M0 v


1 and v2 =M0 v


2. These calculations are shown in the demonstration as “Vector Tips Un-

Sheared.” They should display as constants, but they’re the result of round-tripping constant compo-
nents in the orthogonal frame through the sheared frame where they’re not constant, then back again
to the same constants.

It should now be obvious that the shear-independent dot product is

v1.v2 = v

1M0M0 v


2 (7)

and that the matrix representation of the metric tensor in the sheared coordinates is

26 IntroductionToManifolds006.nb

M0M0 (8)

Those tensor components are displayed in the demonstration and they depend on the actual shear.
Because the dot product in Equation 7 is independent of the particular shear, we deduce that the
metric tensor itself, not its matrix representation, must be independent of the shear if the vectors
themselves, not their lists of components, are independent of the shear. We go one step further and
declare that if the vectors are geometrical entities independent of coordinate system, the metric
tensor itself must be a geometrical entity independent of coordinate system. We will find out later
that it is a bilinear transformation, and we can regard that as a geometrical object.

Back to the Curves

We have one uncountably infinite collection of curves, all with the same 2-vector derivatives as one
another through some chart, and another uncountably infinite collection of curves, all with the same
2-vector derivatives as one another through the same chart, but different — not infinitesimally! — from
the derivatives in the first collection. We can calculate the angles between any such pair of curves
chosen any way we like without considering details of the curves and certainly without considering the
charts. So really, the sets of curves act just like vectors, so we just call them that. That's an honest
achievement.

Definitions: Equivalence, Atlas, Partition
The general concept of a set of things that have something in common is an equivalence class. An
equivalence class comprises all things that are equivalent, according to some specific definition of
equivalence, and excludes all things that are not equivalent to any member of the class. For our pur-
poses, the word “class” is a synonym for “set,” but there are technical differences concerning logical
paradoxes in the theory of sets, deep waters we need not wade in here.

Our specific definition of equivalence in the summary table at the top of this tutorial says that all curves
with equal values and equal derivatives through some chart when t = 0 are equivalent to one another. We
don't have to name the one point where all the curves are equivalent. It's enough to say that any two
curves in a particular equivalence class have the same values and derivatives at t = 0. The value is the
point that they all go through. We don’t even have to name the chart, because all mutually compatible
charts produce the same equivalences, as discussed below. Any chart in the atlas, the set of all compati-
ble charts, will do. The demonstration above about dot products and the metric tensor are the first
clues.

Because all suitable curves have some value and some derivative, the equivalence partitions the set of
all suitable curves, where suitable mean "differentiable through any reasonable chart at t = 0." Every
suitable curve is in exactly one equivalence class. That's what partition means: the set of all suitable
curves is broken up into subsets (equivalence classes) that have no members in common with each
other; their mutual intersections are all empty.

A standard notation for equivalence class is [c], where c is some representative member of the class, a
curve in our case, and the square brackets denote the class (or set, loosely) of all curves equivalent to c.

IntroductionToManifolds006.nb 27

Metrical Distances: Geodesics
We’ve got angles and dot products down; let’s measure non-infinitesimal metrical distances. We want
metrical distances that are the shortest possible. The shortest distance between any two points on any
manifold is the geodesic distance, and the curve (set of points in the manifold) with the shortest
integrated distance is the geodesic between those two points. It’s sensible to say the geodesic curve
because geodesics are unique, at least up to some technicalities. Geodesic curves are computed
through charts by solving certain differential equations.

On the spherical Earth, geodesics are great circles. Other manifolds in common use for the Earth
include the ellipsoidal WGS84 and lumpy spherical harmonics. Geodesics on these manifolds follow the
ellipses and lumps. They are not circles and they are much more complicated to express. But they
harbor no new concepts, so won't help with the purpose of this tutorial, which is to present a simplified
example that any of us, including Richard Feynman, could play along mentally.

The Haversine distance formula converts pairs of lat-lons from φ◦c to geodesic, great-circle distances
on a spherical globe (https://en.wikipedia.org/wiki/Haversine_formula). We won't derive it, just code it
up:

In[37]:= ClearAll[dhv];
dhv[{lat1_, lon1_}, {lat2_, lon2_}] :=

rEarth *

InverseHaversine[
Haversine[lat2 - lat1] +

Cos[lat1] Cos[lat2] Haversine[lon2 - lon1]];

Let’s see how it does between our favorite points in St. Louis and New Orleans. The API (not the GUI) at
“WhatThreeWords” gives us lat-lons for our two points:

In[39]:= UnitConvert[dhv[
{38.627008 °, -90.19941 °}, (* hope.school.hype *)

{29.95107 °, -90.071524 °} (* joins.slides.predict *)],
"miles"]

Out[39]=

599.494 mi

You can check this on-line at many sites, like http://www.csgnetwork.com/gpsdistcalc.html; it’s good
to at least three digits.

Leaving the Real World: Abstract Theory

Definition: Tangent Space

28 IntroductionToManifolds006.nb

https://en.wikipedia.org/wiki/Haversine_formula
http://www.csgnetwork.com/gpsdistcalc.html

The set of all tangent vectors (equivalence classes of curves) at a given point m in the manifold M is the
tangent space at m, denoted Tm M. It’s a set of equivalence classes, a set of sets, loosely. Each equiva-
lence class contains all the curves with the same values and first derivatives at that point and parame-
terized so that the curves, as functions, yield that point when their parameter t is zero.

That entire nugget of notation, Tm M, is an indivisible unit. This is the first example where modern
notation goes into unfamiliar territory for many engineers and scientists. We don't have any notations
like this in school mathematics. Try not to interpret Tm M as Tm times M or Tm applied to M or as any-
thing else.

Tangent Space: Independent of Chart
We did not mention a chart in the definition of the tangent space, nor in the notation Tm M. We didn’t
forget and the notation isn’t deficient. While we need a chart to do calculations, the equivalence
classes do not depend on choice of chart. Curves that are equivalent to one another under one chart φ1
will be still be equivalent to one another under any other chart φ2 so long as φ1 and φ2 are compatible
charts. The derivatives of all the curves in an equivalence class through φ1 are all mutually equal at m
and t = 0. Likewise for φ2, though derivatives through φ2 won’t likely be equal to the derivatives
through φ1.

We don't give a proof, but a chart that didn't preserve equivalence of curves would mess up first deriva-
tives, thus would not be compatible. We’d see singularities, cusps, creases, caustics, divide-by-zero,
and gimbal lock defects going right through our point of interest mw ∈M. In practice, we don’t let our
charts do that. We "push the problems to the poles” or to other convenient places like the 26-th merid-
ian West, outside our open sets, and then we don't go there. That's the meaning of "compatible
charts," they don’t mess up derivatives.

Tangent Spaces are Vector Spaces
A vector space is an abstraction of ordinary intuition on Euclidean vectors as tuples of numbers. The
abstraction picks out just those features of ordinary vectors that suffice for linear algebra to work. We
want the elements of tangent spaces — equivalence classes of curves — to act just like vectors, so we
can apply the entire machinery of linear algebra on them. That’s why this section is important.

What does it mean for equivalence classes of curves to act just like vectors? It means you can add
equivalence classes of curves and multiply equivalence classes of curves by scalars. We’ll need artifi-
cial definitions of “add” and “multiply.” “Adding” equivalence classes of curves is not set union: it's a
special operation defined below.

Begin with ordinary vectors: “ordered tuples of numbers that (1) can be added element-wise to yield
more vectors and (2) can be multiplied by numerical scale factors (scalars).” Abstract away four things:
the objects being added, the addition operation itself, the type of the scalars, and the multiplication
operation between scalars and vectors:

1. Replace “ordered tuples of real numbers” with abstract undefined objects.

IntroductionToManifolds006.nb 29

In our case, the abstract undefined objects will be equivalence classes of curves.

2. Replace "addition" with an artificial definition of "addition." We don't need the concept of "element-
wise."

The artificial definition of “addition” must produce a third equivalence class of curves, call it [c3],
from two other equivalence classes of curves, call them [c1] and [c2]. Write [c3] = [c1] + [c2], where “+”

stands for artificial addition. Don’t confuse it with any other “+“ operation that you know about. You

can tell it’s the special one because it has an equivalence class of curves to the left and an

equivalence class of curves to the right. It’s defined for only two inputs, creating one output, so we

can’t (yet) write expressions like [ca] + [cb] + [cc].

However, we want the artificial definition of addition to act like ordinary vector addition, meaning

four things:

2.1. commutativity of vector addition: [ca] + [cb] = [cb] + [ca] for any two equivalence classes [ca] and [cb] in

Tm M.

2.2. associativity of vector addition: [ca] + ([cb] + [cc]) = ([ca] + [cb]) + [cc] for any three equivalence classes in

Tm M. Now we can write [ca] + [cb] + [cc].

2.3. existence of additive identity: there exists a unique equivalence class of curves 0 =
def

[c0] such that
[ca] + 0 = 0 + [ca] for any equivalence class [ca] in Tm M.

2.4. existence of additive inverse: for any equivalence class of curves, [c], there exists an additive inverse,
denoted -[c], such that [c] + (-[c]) = 0.

Those are four of the eight abstract axioms of a vector space that tangent vectors must satisfy for
tangent spaces to be vector spaces.

To “add” two tangent vectors (equivalence classes) in a tangent space, pick a chart φ (any

compatible chart will do) and pick two representative curves, c1 and c2, one from each tangent

vector (each equivalence class). Compute the derivatives r1 =
def d(φ◦c1) /dt t=0 and

r2 =
def d(φ◦c2) /dt t=0. Those are n-dimensional Euclidean vectors, i.e., tuples of real numbers. We’re

back in n where we know how to add vector-like tuples element-wise.

Are we done, yet? No, because we got a sum r3 = r1 + r2 of ordinary n-vectors in n, but we didn't get
back to a curve c3, let alone to a tangent vector [c3], yet. We need a solution to the pair of equations

d(φ◦c3)

dt
t=0 = r1 + r2 (9)

c3(0) =m (10)

for c3. There are many solutions; we need to construct one or at least prove its existence. Consider
the indefinite integral


d(φ◦c3)

dt
dt =  (r1 + r2)dt = C + (r1 + r2) t = (φ◦c3) (t) (11)

where C is the constant of integration and the last highlighted equality follows from the second

fundamental theorem of calculus

(http://mathworld.wolfram.com/SecondFundamentalTheoremofCalculus.html)

When t = 0, (φ◦c3) (0) must be φ (m) because we want c3(0) =m. Therefore, the constant of

30 IntroductionToManifolds006.nb

http://mathworld.wolfram.com/SecondFundamentalTheoremofCalculus.html

integration C = φ (m). We now have, reversing the equality and substituting the definition of function

composition

(φ◦c3) (t) = φ (c3(t)) = φ (m) + (r1 + r2) t (12)

All these computations are in nice, comfortable n where we know what we’re doing, but we have

to get back to the manifold M, where we can’t do much. Did I say that all charts must be bijections,
meaning invertible or reversible, one-to-one and onto? No? Check the line for "Coordinate Chart" in
the cheat sheet up top and notice the double arrow ↔ in the definition φ : U φ (U)⊂ n. I snuck

that in on you, didn’t I? We didn't need it until now, but it guarantees the existence of an inverse

chart, denoted φ-1, and means that we can take any result r ∈ n = φ (q) of applying φ to a point
q ∈ U⊂M and get back q by applying the inverse chart φ-1(φ (q)) = q ∈ U⊂M (we can go the other
way as well: φ φ-1(r) = r ∈ n). Well, we’ve got our curve, now:

φ-1(φ◦c3) (t) = φ-1 φ (c3(t)) = c3(t) = φ-1  φ (m) + (r1 + r2) t  (13)

It must be in some equivalence class because it’s a curve and all curves are in some equivalence

class, by partitioning. That equivalent class will be our new tangent vector [c3].

We don't know exactly how to calculate c3(t) without picking a chart, but we know that we can

calculate it given any compatible chart. That’s slightly better than a mere existence proof.

To summarize, we define addition as follows (there is a lot of stacked notation, here):

[c3(t)] = φ-1 φ(m) + t×
d(φ◦c1)

dt
t=0 +

d(φ◦c2)

dt
t=0  (14)

where ct(t) and c2(t) are representative curves of [c1(t)] and [c2(t)], respectively.

This is an equation between equivalence classes, hence the square brackets on both sides. The rest
is just the procedure we articulated, bypassing the temporary variables r1 and r2.

We could have constructed any curve for c3(t), say one with wiggles, but why bother? This one goes

“straight” through m, at least in a coordinate sense, through the inverse chart, like our very first
curve in Winona, Mississippi, way above. The following figure illustrates the procedure. Pick any two

c1 and c2, no matter how wiggly, fly up to n through φ, add the vectors, then, for a bunch of t values

around 0, jump back down to the manifold through φ-1
 to trace as much of c3(t) as you want:

IntroductionToManifolds006.nb 31

Commutativity, associativity, existence of the additive identity and additive inverse are trivially

inherited from n through the inverse chart, and we’re done with addition.

3. replace numerical scalars with (different) abstract objects that only need to be member of some

field.

A field, in turn, is an abstraction of the scalars. The axioms for a field are listed here:
http://mathworld.wolfram.com/Field.html.

In our case, we stick with real numbers for scalars. The reals are a field. So are the complex

numbers, so all this stuff works in quantum theory.

4. Define multiplication λ[c] of a tangent vector [c] by a scalar λ ∈ F, F a field; for us, the reals.

4.1. associativity of scalar multiplication: λ(μ[c]) = (λμ)[c] for any two λ, μ ∈ F, and λμ invoking the

multiplication law in F.

4.2. distributivity of scalar addition: (λ + μ)[c] = λ[c] + μ[c], with λ, μ ∈ F, with the left + invoking the scalar
addition law in F, and with the right + invoking vector addition in the vector space.

4.3. distributivity of vector addition: λ([c1] + [c2]) = λ[c1] + λ[c2], with λ ∈ F and both + signs invoking vector
addition.

4.4. existence of identity for scalar multiplication: 1[c] = [c], with 1 ∈ F being the multiplicative identity of
F.

These are all trivially inherited from the field  and from the destination vector space n delivered by
the chart. It might be worth it for you to write out all the details.

32 IntroductionToManifolds006.nb

http://mathworld.wolfram.com/Field.html
http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/VectorSpace.html

Vector-space axioms are listed at Wolfram MathWorld (http://mathworld.wolfram.com/VectorS-
pace.html).

A vector space is not the same thing as an abstract vector space (http://mathworld.wolfram.com/Ab-
stractVectorSpace.html); this is a case where we cannot use the word "abstract" loosely.

If that isn’t enough abstraction for you, look into modules (http://mathworld.wolfram.com/Mod-
ule.html). We won’t need these for our manifolds, but we mention them again when we come to linear
maps, which are defined by certain axioms on modules. All vector spaces are modules, so we won’t get
lost. But some modules are not vector spaces, and such things show up in applications, not just in pure
mathematics. String theory and other exotic, speculative physics need these abstractions.

Type Notation
Consider the following expression:

φ : U ⊂M n (15)

Read it as the logical proposition that “φ has type ‘function from subset U of M to the n-dimensional
real Euclidean space n.’” In general,

f : X  Y (16)

means that f has type “function from set X to set Y .” We might write

f ∈ X  Y (17)

to mean that f is an element of the set of all functions from set X to set Y , but it’s not a notation you’ll
see often. For our purposes, there is no difference between a type and a set. In programming lan-
guages, there is a difference: types are the province of the compiler or language interpreter. Ordinary
code doesn’t manipulate them at all. Code that does manipulate types is one kind of metaprogram-
ming, and many programming languages don’t support it at all. Of course, ordinary code can manipu-
late sets easily. A programming language that doesn’t let you manipulate some kind of representation
of a set of data, even if that representation is just an array, would be unacceptable. When implement-
ing a compiler, we implement types in the language we’re compiling using sets in the language of the
compiler itself.

There is much more to the distinction of types and sets. See https://cs.stackexchange.com/question-
s/91330/what-exactly-is-the-semantic-difference-between-set-and-type for instance. But the intuition
above is enough for us.

A function f from set X to set Y sends elements x ∈ X to elements y ∈ Y , that is

y = f (x)

f does not send the set X to the set Y , that is, something like f (X) is not yet defined. However, this
notation is often used to mean { f (x) : x ∈ X }⊆ Y , that is, the range of f , a subset of Y . Y which is the
codomain of f . The range f (X) is a subset of the codomain Y .

Definition: Components of Tangent Vectors

IntroductionToManifolds006.nb 33

http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/AbstractVectorSpace.html
http://mathworld.wolfram.com/AbstractVectorSpace.html
http://mathworld.wolfram.com/Module.html
http://mathworld.wolfram.com/Module.html

Let φ : U⊂M n be a chart for the manifold M, a function from an open subset U of M to the n-dimen-
sional real Euclidean vector space n. We must use open sets so that continuous derivatives are well
defined (that’s a premise of point-set topology; see reference [15]). For now, just intuit an open set as
one that doesn’t contain its boundary. The technicalities are non-trivial.

That chart φ gives us real-number coordinates x (j) =def x(1), x(2), …, x(n) for any point m in U (the paren-

theses around the index j in an expression like x (j) helps us remember that we’re not raising the num-
ber x to the power j).

Consider the function composition (φ◦c) :  n for some representative parameterized curve c. Of
course, c belongs to a tangent vector (equivalence class of curves), a member of the tangent space Tm M
at m ∈ U. Write the n component functions of that function composition as

(φ◦c)(1), (φ◦c)(2),…, (φ◦c)(n) (18)

We know how to compute derivatives, using ordinary calculus from  to n, of these composite func-
tions. Evaluate the derivatives t = 0 and define the components of the tangent vector that (φ◦c)
represents as follows

v(j) =
def d

dt
(φ◦c)(j) t=0 (19)

They will be the same for every curve c in the tangent vector, justifying our calling them the compo-
nents of the tangent vector, even though we only compute them for a representative curve c. The
components v(1), v(2), …, v(n) are just ordinary n-vectors, tuples numbers in n.

We have managed to convert abstract tangent vectors, equivalence classes of curves in the manifold M,
elements of the abstract tangent space Tm M, to ordinary n-vector tuples in n, where all our traditional
tools of calculus work. We simply had to pick a chart φ, the same chart that lets us convert points in the
manifold to n-vectors x (j), and a representative curve c.

This is the connection between the modern, coordinate-free notation and the traditional, 19-century
notation that Einstein and everyone else used and is documented in reference [17], the book from
which I learned this entire theory. The modern notation literally abstracts out the charts (by a literal
definition of the verb abstract that we won’t get into). In the old notation, we can't even talk about
points and vectors, let alone more advanced things like tensors and differential forms, without charts
and chart-to-chart transformations and the superscripts and subscripts coming with them. The old
notation is more cumbersome, but more explicit. The choice of which to use is a trade-off, at least until
we get to writing computer programs. Academics have, long since, made the decision for us. We can't
read contemporary papers without understanding the modern notation, but we can't write computer
programs without translating it, through charts, into the old notation. That's what this tutorial is all
about.

Definition: Derivative of a Curve
Above, we define the derivative of a curve c through a chart φ, namely d(φ◦c) /dt t=0, to be a concrete
vector in n, the derivative of the representative curve c. We interpret the derivative notation as ordi-

34 IntroductionToManifolds006.nb

nary derivatives from calculus because the function φ◦c :  n, pronouced as “φ◦c is of type ‘func-
tion from the real numbers  to the n-dimensional, real Euclidean vector space n,’” and we already
know calculus for functions from  to n.

Now, define the notation c ' (s) to mean “the tangent vector (equivalence class of curves) of the new
representative curve t c(s + t), evaluated at t = 0.” The new representative curve t c(s + t)
depends upon the old representative curve c and on a non-infinitesimal distance s. It’s a function from
the parameter t ∈  to a point in the manifold, c(s + t), so t c(s + t) is a curve. Its tangent vector
(equivalence class of curves at t = 0) belongs to the tangent space Ts M rooted at s. Thus it has a deriva-
tive d(φ◦ (t c(s + t))) /dt t=0 at s through some chart.

Remember that it doesn't make sense to directly differentiate a curve in the manifold because we don't
know how to subtract points — values of c — even infinitesimally, in a limit expression like
limh0 (c(t + h) - c(t)) /h. We provide a new notation c ' (s), and declare, by fiat, that it means a whole
equivalence class of curves some non-infinitesimal parametric distance s from our original point. This
fiat is justified because we have found out that tangent spaces are independent of charts, so we don't
even need a chart to make this definition. We pick charts when we do calculations, but we don't need
or even want them at this abstract level.

Notation: Lambda Expressions, Anonymous Functions,
Closures, Parameters, Dummy Variables,
Arguments, Function Bodies, Free Variables

The notation t c (s + t) means "the function of t that equals c(s + t)." In programming languages, this
is a lambda expression or closure, because it "closes over" the variables c and s. It's an un-named or
anonymous function; we can only talk about it by writing it out again, not by mentioning its name,
because it doesn’t have a name.

The variable t is the parameter of the lambda expression t c(s + t); it occurs to the left of the func-
tion arrow . Notice this arrow looks different from the function arrow  in type expressions. It has a
“rear bumper.”

Parameters are sometimes called dummy variables because their names don't matter so long as they
don't collide with other names; u c(s + u) means exactly the same as t c(s + t), but not the same
as s c(s + s) or c c(s + c).

The material to the right of the function arrow , c(s + t) in this case, is the body of the function. The
variable s is not a parameter; its value comes from somewhere else, yet the function body can refer to
it. Likewise c is here a variable that refers to some function named c that's defined (bound) outside the
lambda expression. Variables that are not parameters are free variables. We must interpret the body of
t c(s + t) as closing over both s and c, that is, getting their values from some environment not neces-
sarily written down.

This really is a terrible pun: inside the body of a function like t c(s + t), c is a variable that refers to or
evaluates to some function. How do we know the value of c is a function? Because the notation c(s + t)
means “apply the function c to the argument s + t.” Outside the body of t c(s + t), that same function

IntroductionToManifolds006.nb 35

has a name, also c. If you change the value of c to some other function, your lambda expressions
change meaning, depending on when the compiler assigns a value to the variable c when compiling the
body of the function t c(s + t). We could go even further, carefully distinguishing variables from the
names of variables, but that’s far enough for now, other than to note that some modern programming
languages like Clojure do just that, explicitly.

What's the argument s + t? It's the current value of the free variable s added to the current value of the
parameter t.

There is a lot of delicate machinery behind a tiny expression like t c(s + t). You have to keep all this
straight in your head when you're programming or you get into a terrible pickle.

The key is to remember that there are only two ways to get non-constant data into the body of a function:
parameters and free variables.

Walking Down the Curve

c(t) : M is a curve: a function from the real number t to a point in the manifold M.

c ' (s) has a different type: c ' (s) : [t c(s + t)], read “c ' (s) is of type ‘equivalence class of the curve
(function) t c(s + t)’.” c ' (s) is a tangent vector, an equivalence class of curves. The square brackets
mean “equivalence class,” as usual.

The tick mark suggests a derivative, just like traditional notation. Up to now, we only knew how to
compute derivatives through charts, as in d(φ◦c) /dt. Now we have a way to interpret the derivative of
a curve, even evaluated at some non-infinitesimal distance s from the home base of c(t) at t = 0. Walk c
over to c(s + t), set up a new equivalence class of a new anonymous curve function t c(s + t), evalu-
ated at t = 0 as we must always do when defining such equivalence classes, and enjoy your new tan-
gent vector c ' (s) at manifold point c(s), which could be a long way from manifold point c(0).

Reference [14] later uses the notation dc /dt t=0 to mean c ' (s), throwing away the s.

Linear Maps Amongst Tangent Spaces
Start with two manifolds, M and N, and consider a function f :MN that maps points in M to points in
N, shown at the bottom of the diagram immediately below.

We’re going to define the linear map Tm f : Tm M Tf (m) N along with some tricky notation. Just take

Tm f as a single, whole symbol lump denoting a linear map. Tm f is not a tangent space because f
doesn’t denote a manifold because f is not a capital letter.

Because we know that the tangent spaces Tm M and Tf (m) N are vector spaces and linear operations

make sense in vector spaces, it makes total sense to talk about linear maps between vector spaces.
These would be abstract linear maps (https://en.wikipedia.org/wiki/Linear_map), defined on the
module structure of tangent spaces, which abstracts even the vector-space structure, but they are
represented by matrices. We go through all the representation logic in this section, perhaps for the last
time. In the future, we just appeal to the vector-space structure of tangent spaces and safely pretend
that they are vectors as tuples of numbers and that linear maps are matrices as rectangular tables of

36 IntroductionToManifolds006.nb

https://en.wikipedia.org/wiki/Linear_map

numbers.

This function f must be differentiable, which means that it’s differentiable through (potentially differ-
ent) coordinate charts on both sides. Differentiation through charts yields ordinary Euclidean vectors in
m and n. m is now the dimension of the tangent vectors of M, all of the same dimension, and n is now
the dimension of the tangent vectors of manifold N. Previously, n meant the dimension of the tangent
vectors of M. We continue to use m to mean a point in the manifold M. Don’t get confused. Ordinary
multidimensional calculus works in Euclidean spaces, so we’re on concrete ground there.

Choose a representative curve c(t) : M in M, and let v ∈ Tm M be the corresponding tangent vector
(equivalence class of curves) at t = 0, as usual. With our fancy notation for “derivative of a curve,” we
may write v = c ' (0) = dc /dt t=0. That’s an equation on equivalence classes. We define the linear map
Tm f so that, when its representative n×m matrix is applied to any representative m-dimensional
Euclidean vector in the equivalence class v ∈ Tm M, we get the corresponding representative n-dimen-
sional Euclidean vector in the equivalence class (Tm f ·v) ∈ Tf (m) N. We have managed to ground out the

abstractions in computational linear algebra on concrete matrices and (column) vectors.

We can calculate Jacobian matrices to represent such linear maps through coordinate charts: Jacobian
matrices of derivatives of coordinate-chart transformation functions (the old-fashioned way, see [17]).
To be crystal clear, an n-dimensional tangent vector (equivalence class of curves), Tm f ·v, is repre-
sented by a product of an n×m matrix of numbers and some representative m-dimensional Euclidean
vector-tuple in the equivalence class v, then lifted back into an equivalence class in Tf (m) N. The fact

that coordinate charts are differentiable bijections guarantees that representative Jacobians exist and
are non-singular (check this). It also guarantees that “nearby” points on the curve in M remain “nearby”
in N. Without differentiability, f gives us no reason to believe in “preservation of nearby-ness.” In
general, f could completely scramble points around. Remember “WhatThreeWords.”

IntroductionToManifolds006.nb 37

https://en.wikipedia.org/wiki/Linear_map

The n-dimensional vector (Tm f ·v) is an equivalence class of curves equivalent to the representative
curve (f ◦c), a curve in N. That equivalence class is member of the tangent space Tf (m) N. Using our fancy

notation for "derivative of a curve," we may also write

Tm f ·v =
d(f ◦c)

dt
t=0 =

d

dt
f (c(t)) t=0 (20)

Again, that’s an equation of equivalence classes. Schematically, we may apply the chain rule

Tm f ·v =
df

dc

dc

dt
t=0 (21)

to see that df /dc can only mean “the linear map Tm f” because dc /dt t=0 is the tangent vector v ∈ Tm M.
We might even define this schema for the chain rule just so, because there is no other sensible interpre-
tation of df /dc (how do you compute an infinitesimal difference dc of curves?). Such a definition is in
keeping with our fancy notation v = dc /dt t=0, where we also finessed the infinitesimal difference dc of
curves.

This decomposition demonstrates that Tm f ·v does not depend on the particular curve chosen. For a
physicist-style plausibility argument, consider that all curves in Tm M behave identically, up to deriva-
tives of the first order, at point m ∈M.

The notation Tm f is tricky because it’s too easy to think that Tm f has something to do with Tm M, but it
doesn’t, much. Tm f is a linear map, represented by an n×m matrix. The tangent spaces Tm M and Tf (m) N

are sets of equivalence classes, not much in common with matrices. It’s best to just take notations like
Tm f or Tm M as indivisible lumps and not try to read much of anything into the individual parts T, m, f ,
and M.

A Flippant Remark

On page 124, reference [14] flips out the following strange equation with no commentary, presumably
to test whether we’re paying attention and understanding the notation:
dc

dt
t=0 = T0 c ·1 (22)

What could this mean? On the right-hand side, T0 c ·1 must be an instance of the general notation
Tm f ·v, a m×n linear map applied to an m-dimensional vector yielding an n-dimensional tangent vector
(equivalence class of curves) in the tangent space Tf (0) N at the point f (0). That’s consistent with our

understanding of dc
dt t=0 ≡ c ' (s) as a tangent vector from Section “Walking Down the Curve” above.

The presence of c : M in the (f :MN)-slot of (T0 c ·1) = (Tm f ·v) forces M, the source manifold, to be
, and forces N, the target manifold, to be, for some other M, manifold M. That's ok; the source mani-
fold  is a manifold. All finite-dimensional Euclidean spaces are manifolds.

The 0 in the m-slot of (T0 c ·1) = (Tm f ·v) must be the 0 of .

That leaves the 1 in the v-slot of (T0 c ·1) = (Tm f ·v). The dimension of , the source manifold, is 1.
Therefore, v is a 1-dimensional tangent vector (equivalence class of curves) in the tangent space
Tm M = T0 . This implies that the symbol 1 means "the class of all curves at 0 in , equivalent to a

38 IntroductionToManifolds006.nb

1-dimensional vector in  that has the single component 1." We defined components of tangent vec-
tors above by picking some chart φ. When we apply the linear map (m×1 matrix) T0 c to the 1-vector 1,
we get a tangent vector to the target manifold M at point 0. The equation asserts that the something
must be dc /dt t=0, which is the tangent vector c ' (s) : [t c(s + t)] t=0 = [c(s)]. Well, it can’t be anything
else.

Definition: Tangent Bundle
Now that we have a good idea how to map curves and vectors through f from one point in m in one
manifold M to another point f (m) in another manifold N, it’s time to extend these ideas to multiple
points (f is not necessarily or even usually through a chart). We do this with the tangent bundle and the
ordinary chain rule.

The tangent bundle is the disjoint union of all the tangent spaces in M:

TM =  Tm M
m∈M

(23)

The disjoint union of sets is like the union with duplicates allowed.

We must allow duplicates because some tangent spaces will be identical to one another. How can that
be? If all the curves in all the equivalence classes in one tangent space go through the same point, and
all the curves in all the equivalence classes in another tangent space go through a different point, how
can the two tangent spaces be identical?

In the section Equivalence and Partition, when defining tangent spaces, we wrote "We don't have to
name the one point where all the curves are equivalent." Well that explains it. We may suspect that two
tangent spaces go through different points and have everything else the same, but there is no way to
tell just by looking, structurally, at the tangent spaces themselves: they’re just sets of equivalence
classes of curves. We must actually evaluate at least one curve function in some tangent vector in each
tangent space to find out whether the curves go through the same point or different points in the
manifold. We need that one extra piece of information to distinguish the tangent spaces that are
otherwise identical, and that's exactly what a disjoint union will do.

Duplicates are never allowed in a set; the union operation merges duplicates. “Union” won’t do. The
disjoint union, on the other hand, pairs an item with an arbitrary index and then forms the ordinary set
union of the pairs.[16] For a tangent space, the index might just as well be the point m that all the
curves in all the tangent vectors (equivalence classes) in the tangent space go through. We write the
disjoint union as an ordinary union of pairs.

TM = 
m∈M

(m, Tm M) (24)

We must be careful with notation:

◼ TM is a set of pairs where each m appears at most once. In fact, it's a function from M to the as-yet-
un-named set of all Tm M. The best way to define function is just that: a set of pairs such that the first
element of a pair occurs exactly once in the set of pairs.

◼ Tm M is a set of equivalence classes that happen to act like vectors.

IntroductionToManifolds006.nb 39

Digressing to our tiling of Earth with Planck-sized patches, that’s a finite (though enormous) approxima-
tion of a manifold. It may help to conceptualize TM as a finite (though enormous) hash table of m to
Tm M.

TM is a 2 n-Dimensional Manifold

If M is n-dimensional, then TM is 2 n-dimensional. Now we care that the index of the disjoint union
defining TM actually identifies the point m as well as each tangent vector (equivalence class). The index
shouldn’t be completely arbitrary, like a random number. Choose a chart φ. With it, find the coordi-
nates x(j) = x(1), x(2), …, x(n) of m and the components v(j) = v(1), v(2), …, v(n) of any tangent vector in

Tm M. That’s enough for a full coordinate system in TM: just concatenate the coordinates of m to the
components of some vector v to get the 2 n-tuple

x(1), x(2), …, x(n), v(1), v(2), …, v(n) (25)

Treat the 2 n-tuples as coordinates of points in a new manifold structure: the differentiable structure
of TM. Figure out what derivatives, tangent spaces, and tangent bundles must be on top of the tangent
bundle TM. We’ll bypass a construction, appealing to intuition, but it will be important someday when
we get to Hamiltonian mechanics.

Definition: Natural Projection and Fiber Bundle
The natural projection, τM : TMM takes any pair in TM and returns m, the point where all the tangent
vectors attach. If the indices of the disjoint union are the points themselves, then the natural projec-
tion just returns the first element of any pair.

The inverse of the natural projection, τM
-1 :M TM, takes a point m and returns the tangent space Tm M.

Recall that tangent spaces are independent of charts, so there is just one Tm M for each point m in M.
The particular tangent space at m is the fiber of the tangent bundle TM at m. We can now give a name
to our formerly un-named set of all Tm M at all m ∈M: the fiber bundle.

Tf and The Chain Rule
Next, we extend Tm f from one point m to all points. Define the indivisible-lump notation Tf : TM TN
(not Tf) to be the function that takes some tangent space Tm M ∈ TM to the corresponding tangent
space Tf (m) N ∈ TN. It must do so by choosing some m-dimensional vector v ∈ Tm M, finding the (n×m)-di-

mensional linear map Tm f , perhaps by computing the Jacobian of coordinate transformations through
a pair of charts, but who-cares-how in our abstract world, and producing the corresponding n-dimen-
sional vector, (Tm f ·v) ∈ Tf (m) N. We already showed this construction does not depend on choice of

curve or chart, so we’re making headway. We’ve also started to characterize the dimensions of tangent
vectors and linear maps, taking advantage of the fact that we know they are vectors and linear maps.

By appeal to the Jacobians, the chain rule

T(g◦ f) = Tg◦Tf (26)

40 IntroductionToManifolds006.nb

holds. A rigorous, abstract proof would appeal, instead, to abstract linear algebra, yet another formal
discipline. Sketchily, we would have to show that the chain rule holds for all suitable Jacobians and
can therefore be lifted into the abstract spaces. But any physicist or engineer has no qualms with this
theorem, and the advantages of the abstract notation are now evident. This is much shorter and more
elegant, if less obvious, than the corresponding theorem in the style of reference [17].

Future Tutorials
That’s enough to get started. In future tutorials, we cover more material from general manifold theory,
then move into Lagrangian and Hamiltonian mechanics on manifolds. Here are some teasers:

Definition: Diffeomorphism (TODO)

Definition: The Submanifold Property (TODO)

Hamiltonian Mechanics
φ : U k×n-k

and

φ(U⋂ S) = φ(U)⋂ k×{0}

IntroductionToManifolds006.nb 41

