Combining Intuition and Data

John D. Cook Singular Value Consulting

September 11, 2014

John D. Cook Singular Value Consulting Combining Intuition and Data

Why combine intuition and data?

John D. Cook Singular Value Consulting Combining Intuition and Data

Why combine intuition and data?

• Either one alone can lead to nonsense.

- Either one alone can lead to nonsense.
- It's not really possible to separate them.

- Either one alone can lead to nonsense.
- It's not really possible to separate them.
- Better to be explicit about it.

John D. Cook Singular Value Consulting Combining Intuition and Data

3

• Bigger numbers correspond to stronger beliefs.

- Bigger numbers correspond to stronger beliefs.
- If you can calculate a conclusion two ways, both must give the same answer.

- Bigger numbers correspond to stronger beliefs.
- If you can calculate a conclusion two ways, both must give the same answer.
- You must use all evidence.

- Bigger numbers correspond to stronger beliefs.
- If you can calculate a conclusion two ways, both must give the same answer.
- You must use all evidence.
- If evidence increases your belief that A is true, the same evidence must decrease your belief that A is false.

- Bigger numbers correspond to stronger beliefs.
- If you can calculate a conclusion two ways, both must give the same answer.
- You must use all evidence.
- If evidence increases your belief that A is true, the same evidence must decrease your belief that A is false.
- If new evidence increases your belief in *A*, but does not change your belief in *B*, it must increase your belief in *AB*.

It's all probability

P

- Plausibility of A
- Degree of belief in A
- Probability of A
- *P*(*A*)

< ∃ >

э

Learning

æ

Э

< □ > < 同 >

• Learning in any order leads to the same place.

• Learning in any order leads to the same place.

•
$$P(AB \mid C) = P(A \mid C) \cdot P(B \mid AC) = P(B \mid C) \cdot P(A \mid BC)$$

- Learning in any order leads to the same place.
- $P(AB \mid C) = P(A \mid C) \cdot P(B \mid AC) = P(B \mid C) \cdot P(A \mid BC)$
- This is essentially Bayes theorem.

- ₹ 🖹 🕨

From Bayes theorem to Bayesian Statistics

John D. Cook Singular Value Consulting Combining Intuition and Data

< ∃ →

From Bayes theorem to Bayesian Statistics

• Create a model of what you want to study.

- Create a model of what you want to study.
- Let θ be the parameter(s).

- Create a model of what you want to study.
- Let θ be the parameter(s).
- $P(\theta \mid \mathsf{data}) \propto P(\mathsf{data} \mid \theta) \cdot P(\theta)$

Priors

<ロ> <同> <同> < 回> < 回>

æ

• You must start with a prior.

æ

э

< □ > < 同 >

- ₹ 🖬 🕨

- You must start with a prior.
- You always know something before you collect data.

- You must start with a prior.
- You always know *something* before you collect data.
- It's not necessary, or possible, to be completely precise.

The magic of Bayes

John D. Cook Singular Value Consulting Combining Intuition and Data

• Use *everything* you know, intuition and data.

∃ >

- Use *everything* you know, intuition and data.
- The impact of the prior automatically fades as data arrive.

- Use *everything* you know, intuition and data.
- The impact of the prior automatically fades as data arrive.
- All inference follows the same framework. No adhockery.

- Use everything you know, intuition and data.
- The impact of the prior automatically fades as data arrive.
- All inference follows the same framework. No adhockery.
- Results are easy to interpret.

< ∃ →

• Is an undefeated player better than one who has been defeated?

- Is an undefeated player better than one who has been defeated?
- Two wins and no losses vs. 90 wins and 10 losses

- Is an undefeated player better than one who has been defeated?
- Two wins and no losses vs. 90 wins and 10 losses

▲□▶ ▲□▶ ▲ □▶

æ

Ξ.

- Probability Theory: The Logic of Science by E. T. Jaynes
- http://tinyurl.com/bayes-backgammon
- Contact info: http://JohnDCook.com