Introduction to Stokes’ Equation

John D. Cook

September 8, 1992

Abstract

These notes are based on Roger Temam’s book on the Navier-Stokes equations. They cover the well-posedness and regularity results for the stationary Stokes equation for a bounded domain.

1 Function Spaces

Let \(\Omega \) be an open set in \(\mathbb{R}^n \) with \(C^2 \) boundary \(\Gamma \). Let \(\mathcal{D}(\Omega)^n \) be the set of \(\mathbb{R}^n \)-valued smooth functions with compact support in \(\Omega \). Define

\[
\mathcal{V} \equiv \{ \vec{u} \in \mathcal{D}(\Omega)^n : \text{div} \vec{u} = 0 \}.
\]

Let \(\mathcal{V} \) be the closure of \(\mathcal{V} \) in \(\mathcal{H}^1_{0}(\Omega)^n \) and let \(\mathcal{H} \) be the closure of \(\mathcal{V} \) in \(\mathcal{L}^2(\Omega)^n \). Note that for \(\vec{u} = (u_1, \ldots, u_n) \) and \(\vec{v} = (v_1, \ldots, v_n) \), the \(\mathcal{L}^2(\Omega)^n \) inner product is given by

\[
(\vec{u}, \vec{v})_{\mathcal{L}^2(\Omega)^n} = \sum_{i=1}^{n} (u_i, v_i)_{\mathcal{L}^2(\Omega)}
\]

and the \(\mathcal{H}^1(\Omega)^n \) inner product is given by

\[
(\vec{u}, \vec{v})_{\mathcal{H}^1(\Omega)^n} = \sum_{i=1}^{n} (u_i, v_i)_{\mathcal{H}^1(\Omega)}.
\]

Define

\[
\mathcal{E}(\Omega) \equiv \{ \vec{u} \in \mathcal{L}^2(\Omega)^n : \text{div} \vec{u} \in \mathcal{L}^2(\Omega) \}.
\]

For \(\vec{u} \) and \(\vec{v} \) in \(\mathcal{E}(\Omega) \), define

\[
(\vec{u}, \vec{v})_{\mathcal{E}(\Omega)} = (\vec{u}, \vec{v})_{\mathcal{L}^2(\Omega)^n} + (\text{div} \vec{u}, \text{div} \vec{v})_{\mathcal{L}^2(\Omega)}.
\]

Theorem 1 \(\mathcal{D}(\Omega)^n \) is dense in \(\mathcal{E}(\Omega) \).

Proof The proof analogous to the proof that \(\mathcal{D}(\Omega) \) is dense in \(\mathcal{L}^2(\Omega) \): for \(\vec{u} \in \mathcal{E}(\Omega) \), take the convolution of \(\vec{u} \) with a mollifier \(\varphi_\varepsilon \). To see that \(\varphi_\varepsilon \ast \vec{u} \in \mathcal{E}(\Omega) \), note that

\[
\text{div} (\varphi_\varepsilon \ast \vec{u}) = \varphi_\varepsilon \ast \text{div} \vec{u}.
\]

\(\diamond \)
2 Trace Theorem

Let \(\gamma_0 : H^1(\Omega) \to H^{1/2}(\Gamma) \) be the usual trace mapping and let \(\ell_\Omega : H^{1/2}(\Gamma) \to H^1(\Omega) \) be defined by setting \(\ell_\Omega(\varphi) \) equal to the solution to the Dirichlet problem on \(\Omega \) with boundary data \(\varphi \). Both are continuous linear maps. If we let \(H^{-1/2}(\Gamma) \) denote the dual of \(H^{1/2}(\Gamma) \) then

\[
H^{1/2}(\Gamma) \leftrightarrow L^2(\Gamma) = L^2(\Gamma)' \leftrightarrow H^{-1/2}(\Gamma).
\]

Theorem 2 There exists a continuous linear operator \(\gamma_\nu : E(\Omega) \to H^{-1/2}(\Gamma) \) such that \(\gamma_\nu \bar{u} = \bar{u} \cdot \nu \) for every \(u \in \mathcal{D}(\Omega)^n \) where \(\nu \) is the unit outward normal. Also, the following generalization of Stokes’ theorem holds: for every \(\bar{u} \in E(\Omega) \) and \(w \in H^1(\Omega) \),

\[
\langle \bar{u}, \text{grad } w \rangle_{L^2(\Omega)^n} + \langle \text{div } \bar{u}, w \rangle_{L^2(\Omega)} = \langle \gamma_\nu, \gamma_0 w \rangle.
\]

Proof Define \(X_u : H^{1/2} \to \mathbb{R} \) by

\[
X_u\varphi = \langle \bar{u}, \text{grad } w \rangle_{L^2(\Omega)^n} + \langle \text{div } \bar{u}, w \rangle_{L^2(\Omega)}
\]

for any \(w \) such that \(\gamma_0 w = \varphi \). To see that \(X_u \) is well defined, suppose \(\gamma_0 w_1 = \gamma_0 w_2 \). Then \(w = w_1 - w_2 \) is in \(H^1_0(\Omega) \) and hence is the limit of test functions \(w_\varepsilon \). Then

\[
\langle \bar{u}, \text{grad } w_\varepsilon \rangle_{L^2(\Omega)^n} + \langle \text{div } \bar{u}, w_\varepsilon \rangle_{L^2(\Omega)} = 0
\]

by the classical Stokes theorem. Since \(\gamma_0 \) is continuous, the above equation holds for \(w \) as well as \(w_\varepsilon \).

Let \(w = \ell_\Omega(\varphi) \). Applying Cauchy-Schwarz to \(\langle \bar{u}, \text{div } \bar{u} \rangle \) and \(\langle \text{grad } w, w \rangle \) yields

\[
|X_u \varphi| \leq \|ar{u}\|_E\|w\|_{H^1}
\]

and so

\[
|X_u \varphi| \leq c\|ar{u}\|_E\|\varphi\|_{H^{1/2}}
\]

for some \(c \) by the continuity of \(\ell_\Omega \). Thus \(X_u \) is a continuous linear functional on \(H^{1/2}(\Gamma) \) and there exists \(g \in H^{-1/2}(\Gamma) \) such that \(X_u \varphi = \langle g, \varphi \rangle \). Define \(\gamma_\nu \bar{u} = g \). To see that \(\gamma_\nu \) behaves correctly on smooth functions, let \(\bar{u} \) and \(w \) be smooth. Then

\[
X_u(\gamma_0 w) = \int_\Omega \text{div } (w \bar{u}) = \langle \bar{u} \cdot \nu, \gamma_0 w \rangle
\]

by the classical Stokes theorem. Since the traces of smooth functions are dense in \(H^{1/2}(\Gamma) \), the result holds by continuity.

Theorem 3 \(\gamma_\nu : E(\Omega) \to H^{-1/2}(\Gamma) \) is onto.

Proof Given \(\psi \in H^{1/2}(\Gamma) \), let

\[
\phi = \psi - \langle \psi, 1 \rangle \langle 1, 1 \rangle.
\]

Since \(\langle \phi, 1 \rangle = 0 \), there exists a unique solution to the Neumann problem

\[
p \in H^1(\Omega): \quad \Delta p = 0, \quad \frac{\partial p}{\partial \nu} = \varphi
\]

up to a constant. Thus \(\text{grad } p \) is unique. Let \(\bar{u}_0 \) be a \(C^1 \) function satisfying \(\gamma_\nu = 1 \). Then

\[
\bar{u} \equiv \text{grad } p + \langle \psi, 1 \rangle \bar{u}_0 \langle 1, 1 \rangle
\]

satisfies \(\gamma_\nu \bar{u} = \psi \). Also, the map \(\psi \mapsto \bar{u} \) is continuous and linear.

Let \(E_0(\Omega) \) be the closure of \(\mathcal{D}(\Omega)^n \) in \(E(\Omega) \).
Theorem 4 \(E_0(\Omega) = \text{ker} \gamma_\nu. \)

Proof The proof is analogous to the proof that \(H^1_0 = \text{ker} \gamma_\nu. \) \(\diamond\)

3 Characterization Theorems

3.1 Characterization of Gradients

Theorem 5 (De Rham) A necessary and sufficient condition for a distribution \(f \) to be the gradient of another distribution is for \(f \) to vanish on \(V \), the set of divergence-free test functions.

Assume from now on that \(\Omega \) is bounded, unless otherwise stated.

Theorem 6 If a distribution \(p \) has all its derivatives in \(L^2(\Omega) \), or \(H^{-1}(\Omega) \), then \(p \) is in \(L^2(\Omega) \). In the first case,
\[
\|p\|_{L^2(\Omega)} \leq c(\Omega) \|\text{grad} p\|_{L^2(\Omega)}.
\]
In the second,
\[
\|p\|_{L^2(\Omega)} \leq c(\Omega) \|\text{grad} p\|_{H^{-1}(\Omega)}.
\]

Note that \(L^2(\Omega)/\mathbb{R} = \{ u \in L^2(\Omega) : \int_\Omega u \, dx = 0 \} \), the orthogonal complement of the constant functions.

Corollary 1 The divergence operator maps \(H^1_0(\Omega) \) onto \(L^2(\Omega)/\mathbb{R} \).

Proof Let \(A : L^2(\Omega) \to H^{-1}(\Omega)^n \) be the gradient operator. \(A \) is bounded linear operator and Theorem 6 shows that \(A \) is an isomorphism onto \(\text{Rg}(A) \) and so \(\text{Rg}(A) \) is closed. It follows that \((\ker A)^\perp = \text{Rg}(A^*) \).

Thus \(p \) is a solution to the Neumann problem with zero data and so must be constant. But \(\bar{u} = \text{grad} p \) and thus \(\bar{u} = 0. \) \(\diamond \)

3.2 Characterization of Spaces

Theorem 7 We may characterize \(H \) and its orthogonal complement in \(L^2(\Omega) \) by
\[
H = \{ \bar{u} \in L^2(\Omega)^n : \text{div} \bar{u} = 0 \text{ and } \gamma_\nu \bar{u} = 0 \}
\]
and
\[
H^\perp = \{ \bar{u} \in L^2(\Omega)^n : \bar{u} = \text{grad} p \text{ for some } p \in H^1(\Omega) \}.
\]

Proof Characterization of \(H^\perp \). “\(\subseteq \)”: If \(\bar{u} \) is perpendicular to \(H \), is perpendicular to \(V \) and thus by De Rham’s theorem, \(\bar{u} = \text{grad} p \) for some distribution \(p \). Since \(\bar{u} \in L^2(\Omega) \), Theorem 6 tells us \(p \in L^2(\Omega) \) as well and so \(p \in H^1(\Omega) \).

“\(\supseteq \)”: \((\text{grad} p, \bar{v})_{L^2(\Omega)^n} = -(p, \text{div} \bar{v})_{L^2(\Omega)} = 0 \) for all \(\bar{v} \in V \) and thus for all \(\bar{v} \in V \).

Characterization of \(H \). “\(\subseteq \)”: If \(\bar{u} \in H \), there exists a sequence \(\bar{u}_n \) converging to \(\bar{u} \) in \(L^2(\Omega) \). \(\text{div} \bar{u}_n = 0 \) for all \(n \). Since distributional differentiation is continuous on \(L^2(\Omega) \), \(\text{div} \bar{u} = 0 \). This shows that \(\bar{u}_n \) not only converges in \(L^2(\Omega) \) but also in \(E(\Omega) \). Since \(\gamma_\nu \) is continuous on \(E(\Omega) \) and \(\gamma_\nu \bar{u}_n = 0 \), \(\gamma_\nu \bar{u} = 0 \).

“\(\supseteq \)”: \(H \) is a closed subspace of \(L^2(\Omega) \) and thus any subspace properly containing it must contain an element of \(H^\perp \). Suppose there exists a \(\bar{u} \in H^\perp \) with \(\text{div} \bar{u} = 0 \) and \(\gamma_\nu \bar{u} = 0 \). \(\bar{u} = \text{grad} p \) for some \(p \in L^2(\Omega) \) and
\[
\text{div} (\text{grad} p) = \Delta p = 0, \quad \gamma_\nu \text{grad} p = 0.
\]
Thus \(p \) is a solution to the Neumann problem with zero data and so must be constant. But \(\bar{u} = \text{grad} p \) and thus \(\bar{u} = 0. \) \(\diamond \)
Theorem 8 \(H^\perp \) can be split into the orthogonal spaces
\[
H_1 \equiv \{ \vec{u} \in L^2(\Omega)^n : \vec{u} = \text{grad} \ p \text{ for some } p \in H^1(\Omega) \text{ and } \Delta p = 0 \},
\]
and
\[
H_2 \equiv \{ \vec{u} \in L^2(\Omega)^n : \vec{u} = \text{grad} \ p \text{ for some } p \in H^1_0(\Omega) \}.
\]

Theorem 9 \(V = \{ \vec{u} \in H^1(\Omega)^n : \text{div} \ \vec{u} = 0 \} \).

Proof "\(\subseteq \)" follows from density of \(V \) and continuity of differentiation.

"\(\supseteq \)" Let \(W \) be the closed subspace of \(H^1_0(\Omega) \) defined by the right side of the theorem statement. Suppose \(L \) is a functional defined on \(W \) which vanishes on \(V \). Extend \(L \) to a functional on \(H^1_0(\Omega) \). But then \(L(\vec{v}) = - (p, \text{div} \ \vec{v}) = 0 \) for all \(\vec{v} \in W \) and so \(V = W \).

We have assumed \(\Omega \) is bounded. For general \(\Omega \)'s, the relationship between \(V \) and the divergence free members of \(H^1_0(\Omega)^n \) was an open question as of 1985.

The relationship between the various spaces may be summarized by the following diagram.

\[
\begin{array}{cccc}
D(\Omega)^n & H^1_0(\Omega)^n & L^2(\Omega)^n & \\
\cup & \cup & \cup \\
V & \subseteq & V & \subseteq \\
& H & \subseteq & E_0 \subseteq E
\end{array}
\]

4 Variational Formulation of Stokes’ Equation

4.1 Homogeneous Problem

The strong form of the homogeneous steady-state Stokes problem is to find a function \(\vec{u} \) representing velocity and a function \(p \) representing pressure such that
\[
\begin{align*}
-v\Delta \vec{u} + \text{grad} \ p &= \vec{f} \in L^2(\Omega)^n \quad (1) \\
\text{div} \ \vec{u} &= 0 \in L^2(\Omega) \quad (2) \\
\gamma_0 \vec{u} &= 0 \in H^{1/2}(\Gamma). \quad (3)
\end{align*}
\]

Here \(\nu \) represents kinematic viscosity, a positive constant. Also, the Laplacian is applied component-wise.

The divergence and boundary conditions on \(\vec{u} \) are equivalent to asking that \(\vec{u} \) be an element of \(V \subseteq H \).

Equation 1 says that \(\vec{f} + v\Delta \vec{u} \) is an element of \(H^\perp \). In this sense equation 1 and equations 2 and 3 are complementary.

Multiplication by a divergence-free test function \(\vec{v} \in V \) and integration by parts shows
\[
v((\vec{u}, \vec{v})) = (\vec{f}, \vec{v})_{L^2(\Omega)^n} \quad (4)
\]
for all \(\vec{v} \in V \) and thus for all \(\vec{v} \in V \). Here \(((\cdot, \cdot)) \) is the principle part of the \(H^1(\Omega)^n \) inner product.

Conversely, if \(\vec{u} \in V \) satisfies equation 4 for all \(\vec{v} \in V \), then Theorems 5 and 6 show that
\[
-v\Delta \vec{u} - \vec{f} = -\text{grad} \ p
\]
for some \(p \in L^2(\Omega) \).

It is clear from the Lax-Milgram theorem that 4 is well posed even if \(\Omega \) is only bounded in one direction, but our characterization of \(V \) depends on \(\Omega \) being bounded. \(p \) is as uniquely determined as it could be: since only \(\text{grad} \ p \) appears in the equation, \(p \) could only possibly be unique up to a constant.
4.2 Non-Homogeneous Problem

Given \(\vec{f} \in L^2(\Omega)^n, \ g \in L^2(\Omega), \) and \(\vec{\varphi} \in H^{1/2}(\Gamma)^n, \) we can solve

\[
-\nu \Delta \vec{u} + \text{grad} \ p = \vec{f} \in L^2(\Omega)^n \tag{5}
\]
\[
\text{div} \ \vec{u} = g \in L^2(\Omega) \tag{6}
\]
\[
\gamma_0 \vec{u} = \vec{\varphi} \in H^{1/2}(\Gamma)^n \tag{7}
\]

provided that

\[
\int_{\Omega} g \, dx = \int_{\Gamma} \vec{\varphi} \cdot \nu \, ds. \tag{8}
\]

Proof Pick \(\vec{u}_0 \in H^1_0(\Omega)^n \) with \(\gamma_0 \vec{u}_0 = \vec{\varphi}. \) From the compatibility condition 8 and Stokes’ formula,

\[
\int_{\Omega} g - \text{div} \ \vec{u}_0 \, dx = 0.
\]

Thus by Corollary 1, there exits \(\vec{u}_1 \in H^1_0(\Omega)^n \) with \(\text{div} \ \vec{u}_1 = g - \text{div} \ \vec{u}_0. \) If we let \(\vec{v} = \vec{u} - \vec{u}_0 - \vec{u}_1 \) then the non-homogeneous Stokes problem for \(\vec{u} \) reduces to the homogeneous Stokes problem for \(\vec{v} \) with \(\vec{f} \) replaced by \(\vec{f} - \nu \Delta (\vec{u}_0 - \vec{u}_1). \)

\[\Box\]

5 Regularity

Theorem 10 Let \(\Omega \subseteq \mathbb{R}^n \) be a bounded open with \(C^{m+2} \) boundary for a positive integer \(m. \) Let \(1 < q < \infty. \) Suppose that \(\vec{u} \in W^{2,q}(\Omega)^n \) and \(p \in W^{1,q}(\Omega) \) are solutions to the Stokes problem with data

\[
\vec{f} \in W^{m,q}(\Omega)^n, \qquad \vec{g} \in W^{m+1,q}(\Omega)^n, \quad \text{and} \quad \vec{\varphi} \in W^{m+2-1/q,q}(\Gamma)^n.
\]

Then \(\vec{u} \in W^{m+2,q}(\Omega)^n \) and \(p \in W^{m+1,q}(\Omega). \) Also, there exists a constant \(c(q,v,m,\Omega) \) such that

\[
\| \vec{u} \| + \| p \| \leq c\{ \| \vec{f} \| + \| \vec{g} \| + \| \vec{\varphi} \| + d\| \vec{u} \|_{L^q(\Omega)^n} \}
\]

where \(d = 0 \) for \(q \geq 2 \) and \(d = 1 \) otherwise.

The unsubscripted norms in the above inequality are taken to be the strongest norms which make sense. In the case of \(p \) this means

\[
\| p \|_{W^{m+1,q}(\Omega)/\mathbb{R}}
\]

since \(p \) is only determined up to a constant.