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The expected value of a random variable has two different definitions, and
it’s not obvious that they’re equivalent. Here I present both definitions and
show why they are in fact equivalent.

An elementary probability or statistics book might say that a random vari-
able X is continuous if there exists a function fX : IR → IR, the probability
density function (PDF) of X, such that

P (X ≤ x) =
∫ x

−∞
fX(t) dt.

In that case they would define the expectation of X to be

E(X) =
∫ ∞
−∞

x fX(x) dx.

An advanced (i.e., measure-theoretic) probability book would define E(X)
differently. Let X : Ω → IR be a random variable. (This implies (Ω, P ) is a
measure space, P (Ω) = 1, and X is an itegrable function.) The expectation of
X is simply its integral:

E(X) =
∫

Ω

X dP.

Note that while both definitions involve integrals, they integrate different
functions over different spaces. In the elementary definition, a real-valued func-
tion is being integrated over the real line. In the advanced definition, the random
variable itself is being integrated over a probability space.

In the elementary theory, you never see Ω, the domain of X. And you never
work with X itself, only with its associated PDF. The advanced theory focuses
on X and its domain. Perhaps the biggest source of confusion in theoretical
probability is failure to distinguish X and fX .
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Now we start to show how the advanced definition relates to the elementary
one.

The random variable X induces a probability measure µX on IR by

µX(A) = P{ω ∈ Ω : X(ω) ∈ A}.

If µX is absolutely continuous with respect to Lebesgue measure then by the
Radon-Nikodym theorem there exists a function fX : IR→ IR such that µX(A) =∫

A
fX dx. Sometimes this result is written as

dµX = fX dx.

The function fX is a PDF for X.

The following theorem is what is sometimes called the “rule of the uncon-
scious statistician” or the RUS. The justification for the name is that the theo-
rem is applied so frequently that it is done almost unconsciously.

Theorem 1 (RUS) If g : IR→ IR is µX-measurable, then g(X) is P -measurable
and ∫

Ω

g(X) dP =
∫

IR

g(x) fX(x) dx.

If X has a distribution function fX ,

E(g(X)) =
∫ ∞
−∞

g(x)fX(x) dx.

The special case g(x) = x shows that

E(X) =
∫ ∞
−∞

xfX(x) dx.

We outline a proof the theorem above. Let 1A be the indicator function of
a Borel set A ⊆ IR. Then∫

IR

1A(x)fX(x) dx = µX(A) = P{X−1(A)} =
∫

Ω

1A(X(ω)) dP.

By linearity, this proves the theorem for all functions g taking only a finite
number of values. Since every measurable function is a monotone limit of such
functions, the theorem follows from the monotone convergence theorem.

2


