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Abstract

This paper addresses the problem of evaluating P (X > Y ) where X
and Y are independent beta random variables. We cast the problem in
terms of a hypergeometric function and use hypergeometric identities
to calculate the probability in closed form for certain values of the
distribution parameters.
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1 Introduction

Define g(a, b, c, d) to be the probability of a sample from a beta(a, b) random
variable being larger than an independent sample from a beta(c, d) random
variable. Thus for positive parameters a, b, c, and d,

g(a, b, c, d) =
∫ 1

0

xa−1(1− x)b−1

B(a, b)
Ix(c, d) dx (1)

where Ix(c, d) is the incomplete beta function, the CDF of a beta(c, d) ran-
dom variable.
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The function g plays a central role in the calculation of randomiza-
tion probabilities for many outcome-adaptive clinical trials with binary end
points. Suppose the prior probabilities of response on each of two arms in
a randomized trial have beta priors. Because the beta prior is conjugate for
binomial distributions, the posterior distributions on the probability of re-
sponse are also beta distributions. A simple adaptive randomization scheme
is to assign patients to an arm with probability equal to the probability that
that arm is superior. If the posterior distribution on one arm is beta(a, b)
and the other is beta(c, d), then the probability of assigning the first arm is
g(a, b, c, d). More generally, one often assigns the first arm with probability

g(a, b, c, d)λ

g(a, b, c, d)λ + g(c, d, a, b)λ

for some λ > 0. Values of λ < 1 dampen the the effect of the data on
the randomization probabilities, and values λ > 1 amplify the effect of the
data. See [3], [4], and [5] for theoretical background. See [11] for software
to simulate adaptively randomized trials.

The function g is also also at the heart of the safety monitoring methods
of Thall, Simon, and Estey [9]. As above, the probabilities of response on
each of two arms (either two active control arms or an active arm and a
historical standard) are distributed as beta random variables. Accrual to
an arm stops if the probability of that arm being superior falls below some
threshold. That is, if g(a, b, c, d) is too small, the first arm is closed. See [8]
for software implementing this method.

In general, the function g cannot be evaluated in closed form and must
be approximated numerically, as for example in [10]. In [6], we gave general
methods for computing g for several distribution families, including beta.
Here we focus on special cases that can be evaluated in terms of gamma
functions. These special cases may be directly useful in applications. Also,
the special cases given here provide test cases for numerical software used
to evaluate g for general arguments.

The symmetries

g(a, b, c, d) = g(d, c, b, a) = g(d, b, c, a) = 1− g(c, d, a, b)

are developed in [6]. For the 24 permutations of the 4 arguments, there are at
most six different values of g. These are g(a, b, c, d), g(a, b, d, c), g(a, c, d, b)
and their complementary probabilities.
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If we define

h(a, b, c, d) =
B(a+ c, b+ d)
B(a, b)B(c, d)

(2)

=
Γ(a+ c)Γ(b+ d)Γ(a+ b)Γ(c+ d)
Γ(a)Γ(b)Γ(c)Γ(d)Γ(a+ b+ c+ d)

. (3)

then [6] shows that the following recurrence relations hold:

g(a+ 1, b, c, d) = g(a, b, c, d) + h(a, b, c, d)/a
g(a, b+ 1, c, d) = g(a, b, c, d)− h(a, b, c, d)/b
g(a, b, c+ 1, d) = g(a, b, c, d)− h(a, b, c, d)/c
g(a, b, c, d+ 1) = g(a, b, c, d) + h(a, b, c, d)/d

2 Case: one integer argument

First we consider the special case d = 1. We have

g(a, b, c, 1) =
∫ 1

0

xa−1(1− x)b−1

B(a, b)

∫ x

0
ctc−1 dt dx

=
∫ 1

0

xa+c−1(1− x)b−1

B(a, b)

=
B(a+ c, b)
B(a, b)

=
Γ(a+ b) Γ(a+ c)
Γ(a+ b+ c) Γ(a)

.

Using the recurrence relationship for the fourth argument, we can reduce
the case of d being any positive integer to the case d = 1.

Using symmetries of g we can permute any parameter into the third argu-
ment, and so we can compute g(a, b, c, d) exactly if any one of the arguments
is an integer.
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3 Derivation of Hypergeometric Form

In [6] we showed that

g(a, b, c, d) =
∞∑

k=0

h(a, b, c+ k, d)
c+ k

.

If we define
tk =

h(a, b, c+ k, d)
c+ k

then a little algebra shows that

tk+1

tk
=

(a+ c+ k)(c+ d+ k)
(c+ k + 1)(a+ b+ c+ d+ k)

.

Since tk+1/tk is a rational function of k, it follows that the infinite sum
for g is a constant times a hypergeometric function. (See [2] or [7] for
background on hypergeometric functions.) Furthermore, one can read the
hypergeometric parameters from the factorization of tk+1/tk. It follows that

g(a, b, c, d) =
h(a, b, c, d)

c
3F2

(
a+ c, c+ d, 1

c+ 1, a+ b+ c+ d

∣∣∣∣∣ 1
)

(4)

By representing our function g in terms of a hypergeometric function,
we open the possibility of taking advantage of cataloged identities known
for such functions. See [12] for thousands of hypergeometric identities.

While the original definition of g given in (1) requires all parameters
to be positive, equation (4) does not. The function h requires that none
the beta function arguments in its definition are non-positive integers. The
hypergeometric function 3F2 requires the real part of s` − su be positive in
order for the series to converge, where s` is the sum of the lower parameters
and su is the sum of the upper parameters. In our case s` − su is simply
b. By using the parameter symmetries, we can make any parameter the “b”
parameter.

Even though only positive parameters in g corresponds inequality prob-
abilities, it will be useful below to use negative arguments along the way to
compute g for certain positive arguments.
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4 Case a + b + c + d = 1

In this section, we consider the case a+b+c+d = 1. Then the 3F2 function
has 1 as both an upper and lower parameter and reduces to the simpler
hypergeometric function 2F1 and so

g(a, b, c, d) =
h(a, b, c, d)

c
2F1

(
a+ c, c+ d

c+ 1

∣∣∣∣∣ 1
)
.

A theorem of Gauss ([1], equation 15.1.20) allows us to evaluate the 2F1

term in closed form:

2F1

(
a+ c, c+ d

c+ 1

∣∣∣∣∣ 1
)

=
Γ(c+ 1) Γ(1− a− c− d)

Γ(1− a) Γ(1− d)
.

Using the reflection formula ([1], equation 6.1.17)

Γ(z)Γ(1− z) = π csc(πz)

we find that for a+ b+ c+ d = 1,

g(a, b, c, d) =
sin(πa) sin(πd)

sin(π(a+ b)) sin(π(b+ d))
.

We can repeatedly apply the recurrence relations given above to in-
crease the parameters by any integer amount. Therefore if we can compute
g(a, b, c, d), we can compute g(a+i, b+j, c+k, d+`) for any positive integers
i, j, k, and `.

Furthermore, we can often compute g(a, b, c, d) when a + b + c + d is
any integer. Consider, for example, g(.7, .8, .1, .4). The parameters sum to 2
and given the definition (1) there would be nothing we could do. However,
equation (4) allows negative arguments, and so we apply the recurrence
relationship for the first argument and evaluate

g(.7, .8, .1, .4) = g(−.3, .8, .1, .4) + h(−.3, .8, .1, .4)/.3.

This strategy will not work if h(a, b, c, d) is undefined, i.e. we cannot
have a+ b, c+d, a+ c, or b+d equal to zero. For example, we could not use
the approach in this section to evaluate g(.7, .3, .4, .6) because decreasing
any parameter by 1 would cause h to be undefined. However, we give a
method below that can be used for this case.
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5 Case a + b = c + d = 1

Very often in practice, statisticians choose prior parameters for the beta dis-
tribution that sum to an integer. This is because the sum of the parameters
can be interpreted as the number of “observations” contained in the prior
and it seems natural to choose priors that make this value an integer.

If a+ b = c+ d = 1, we have

h(a, b, c, d) =
B(a+ c, b+ d)
B(a, b)B(c, d)

=
Γ(a+ c)Γ(b+ d)
Γ(a)Γ(b)Γ(c)Γ(d)

= Γ(a+ c)Γ(b+ d) sin(πa) sin(πd)/π2.

Also,

3F2

(
a+ c, c+ d, 1

c+ 1, a+ b+ c+ d

∣∣∣∣∣ 1
)

= 3F2

(
a+ c, 1, 1
c+ 1, 2

∣∣∣∣∣ 1
)

=
c(ψ(c)− ψ(1− a))

a+ c− 1

by equation 07.27.03.0053.01 of [12], provided a+ c 6= 1 and 1−a > 0. Here
ψ(z) is the logarithmic of the Γ function, Γ′(z)/Γ(z).

Therefore equation (4) can be evaluated analytically for a+b = c+d = 1,
provided a+c 6= 1 and a > 0. The recurrence relations can be used to parlay
these results to the case of a+ b and c+ d being positive integers.

6 Conclusion

In this note we defined the function g(a, b, c, d) and briefly outlined some
of its uses in conducting clinical trials. We expressed this function as a
hypergeometric function, extending the function’s domain and making it
possible to apply well known identities. We showed that the function can be
evaluated in closed form provided one of the arguments is a positive integer,
and can often be evaluated in closed form if the parameters sum to a positive
integer.
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