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1 Introduction

This note concerns trial conduct for one-arm trials that monitor safety by com-
paring time-to-event outcomes of the experimental treatment to an historical
treatment. To date, such trials have been conducted using software which eval-
uates the stopping rule as the trial progresses. We show that is it possible to
pre-calculate the stopping conditions, simplifying trial conduct and opening up
new possibilities.

2 Probability model

Let TE be the time to failure for the experimental treatment and assume that
TE |µE follows an exponential distribution with mean µE . Also, assume that a
priori µE has an inverse gamma distribution. Then the posterior distribution
of µE given right-censored time-to-event data is also inverse gamma. Assume
that the mean time to failure µS for an historical standard treatment has a
known inverse gamma distribution. We monitor a trial of the the experimental
treatment, stopping if at any point in the trial

P (µE > µS + δ |data) < c (1)

for some value c. Here δ is the required improvement over historical (δ may be
zero) and c is a cutoff value, say c = 0.05. This says we stop the trial if the
posterior probability that the new treatment improves time to failure relative
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to the standard is too small. See Thall et al1 for a detailed description of a trial
designed according to this probability model.

A couple simplifications apply immediately. First, it is not necessary to
know every patient’s data. For this model, we only need to know two summary
statistics: total number of failures and total time on test. The number of failures
is added to the shape parameter of the distribution on µE and the total time
on test is added to the scale parameter. Secondly, we need only evaluate the
stopping rule when there has been a failure because the left side of (1) only
decreases when a failure occurs. (See Appendix.) In other words, no news is
good news.

Since total time on test is real-valued, trials conducted at MDACC have
evaluated the stopping criterion repeatedly during the course of the trial using
software to calculate the inequality probability (1). However, it is possible to
prepare a table before the trial begins which makes such calculations during the
trial unnecessary.

3 Tabulation

Assume a trial has a maximum accrual of N patients. At any point during the
trial, the number of failures is an integer 0 ≤ n < N . Given n failures, the left
side of (1) is an increasing function of total time on test. (See Appendix.) For
each n, we calculate τ(n), the total time on test required to satisfy

P (µE > µS + δ |data) = c.

We prepare a table of τ(n) values before the trial starts. When an event occurs
during the trial, we look up the τ value corresponding to that number of events.
If the total time on test is less than τ , the trial stops. Otherwise, the trial
continues.

We could calculate τ(n) to many decimal places, but it would often suffice
to tabulate the τ values only to the nearest integer, assuming time is measured
in days. Failure times are seldom known more precisely than on a scale of days.
Also, if the decision whether to continue a trial depends on the exact time of
day a failure occurred, perhaps accrual should at least be suspended pending
further analysis.

A printed table of τ values would make it possible to conduct simple time-
to-event safety monitoring without using any software. This could serve as a
contingency plan for continuing to monitor a trial while software is unavailable,
say due to a network outage. One could even use a paper calendar to calculate

1Peter F. Thall, Leiko H. Wooten, and Nizar M. Tannir (2005). Monitoring Event Times
in Early Phase Clinical Trials: Some Practical Issues, Clinical Trials, to appear.
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total time on test, though it would be more convenient to use, for example,
Microsoft Excel2 to calculate the number of days between dates.

There are other advantages to tabulating the τ values. Scanning the ta-
ble could improve understanding of the trial design’s operating characteristics.
Also, such a table makes it easy to answer questions beyond whether the trial
should continue at a given point in time. For example, one could determine
whether a particular patient’s outcome has the potential to stop the trial. Or
more generally, one could determine what combination of events, if any, has the
potential to stop the trial.

The software TTEConduct will create the table of τ values discussed in this
section. See http://biostatistics.mdanderson.org/SoftwareDownload/.

4 Appendix

Twice in this note we have assumed a monotonicity result that is proved in the
theorem below.

Lemma 1 Let

f(x;α, β) =
(

βα

xα+1Γ(α)

)
e−β/x

be the PDF of an inverse gamma random variable. Fix β2 > β1 > 0 and define

k =
β2 − β1

α(log β2 − log β1)
.

Then f(x;α, β2)− f(x;α, β1) is negative on (0, k) and positive on (k,∞).

Proof Fix x > 0. Multiplying by xα+1Γ(α) and taking logs shows that
f(x;α, β2) > f(x;α, β1) if and only if

α log β2 −
β2

x
> α log β1 −

β1

x
.

Rearranging terms show that this is equivalent to

x >
β2 − β1

α(log β2 − log β1)
.

♦

2To calculate the days between two dates in Excel, simply subtract the dates. For example,
if cell A1 contains a start date and cell B1 contains an end date, enter =B1-A1 in the cell to
receive the difference. If the difference appears as a date rather than a number, format the
result cell as numeric.

3



Theorem 1 Let X1, X2, and Y be independent inverse gamma random vari-
ables with Xi ∼ IG(α, βi) and Y ∼ IG(αY , βY ). Let δ ≥ 0 be given. If β2 > β1

then
P (X2 > Y + δ) > P (X1 > Y + δ).

Proof In the notation of the lemma above, P (X2 > Y + δ)− P (X1 > Y + δ)
is given by ∫ ∞

0

f(y;αY , βY )
∫ ∞

y+δ

f(x;α, β2)− f(x;α, β1) dx dy.

Define g(x) = f(x;α, β2)−f(x;α, β1). Since f(x;α, β1) and f(x;α, β2) are prob-
ability density functions, ∫ ∞

0

g(x) dx = 1− 1 = 0.

Since g(x) is negative for 0 < x < k, and positive for x > k, we must have for
y > 0, ∫ ∞

y+δ

g(x) dx >

∫ ∞

0

g(x) dx = 0.

♦
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