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Abstract

This report proves asymptotic results for the posterior mean when
sampling from a normal distribution with a Cauchy prior on the loca-
tion parameter.

1 Problem statement

Define

and

1

c(f) = m

Let y; be samples from a normal(d, o?) distribution where 6 has a
Cauchy(0, 1) prior. Let § be the sample mean of the y; values. The posterior
mean of 6 is given by

[ 00y — 0;0//n)c(6) db
2o 0@ —0;0//n)c(0)do
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We will establish asymptotic results for the posterior mean of  as j — oo
and as n — oo.

2 Preliminaries

2.1 Fourier transforms
We will use the following results from Fourier analysis to evaluate the in-

tegrals below. First, define the Fourier transform of a function f € L*(R)
as

F(f)() = f% /  £(0) explizt) db.

The inverse Fourier transform is then given by
1 o
F = — 0 —iz6) df.
(i) = = [ 1(0) exp(=iat)

Define the convolution of two functions f and g by

1 o
(F*0)(w) = / )9 - 0)d,

Then
fxg=gxf

and

F(f*g)=F(f)F(g).

2.2 Integrating the exponential of a quadratic

We will also use the following result.

Claim 1. Fora >0 and b € C,

Jﬁajexp(axzkbx)dx:: VGHijfgz)erﬁ:<‘b>. (1)



Proof. Use the factorization

) b \? b2
ax —ba:—(\/ﬁ:):—z\/a> ~ %

to come up with the change of variables

w:ﬁx;@.

Now

0o 1 o] b2
2 2
exp(—az” + bx)dr = / exp(—w~) exp <> dw
/o ( ) va J_yaya (7w 2a

2

) e
- w / exp(_wQ) dw
va o Jyeva

2
/T exp (g—a) 9 [oo ,
= — exp(—w?) dw

2Va VT bpva

L) ()

2V/a 2v/a

3 Integration results

Claim 2.
/Z¢(y—9;a)c(9)d9: Q;W {h <1}2;y> v h (i}ﬁ)} (2)

h(z) = exp(2?) erfe(z).

where

Proof. The integral in equation (2) equals v/27(¢ * ¢)(y) and so its Fourier
transform is F(¢) F(c). These Fourier transforms are well known:

1

F@)@) = —=ep(-o'r?/2)
F@@) = —e=exp(-la).

3



Applying the inverse Fourier transform we have the following.

/w by —0:0)c0)d) = Var(éxc)(y)

= F Y FW2r(p*c)(y)))
1 2

et

1/00 (—o?z*/2 izy) d
= — ex —O0 X — T — 1T X
om J, &P Yy

2% — |z| — izy) dx

1 0
+— / exp(—o?2?/2 + x — ixy) dz.
27 J_ o

The final two integrals can be evaluated in terms of the complementary error
function erfc using Claim 1. O

Claim 3.

/_Z 00l — 0;0) (0) b = - ;m {h (1\/22?/) _h (1\5?)} (3)

where as before

h(z) = exp(2?) erfe(z).

Proof. As before we take the Fourier transform of the integral and then
transform back. Define the function

0
") = ey
Here we use the fact that
1T T
F = ——— —l|x|).
(n)(z) Jonlz exp(—|z|)

(The function 7 is not in L'(R) and so the elementary definition of the
Fourier transform does not hold. But € L?*(R) and when the Fourier
transform is extended to L?(R), the right side of the equation above is its
transform.)

/_OO 06(y — 0;0)c(0)dd = V2mpxn



- v (e (-57) g entk)

[ e 2~ el ~ i) d
= 7 — — €eX —O0 X — || — 1T i
2 P 4

> 1
= z/ o exp(—o?2?/2 — x —izy) da
0

0
1
—i/ — exp(—0?2?/2 + & —ixy) du.

oo 2T

As before, the final two integrals can be evaluated using Claim 1. O

4 Asymptotic results

Next we apply the asymptotic series

erfe(z) = eXI\’(f;) (1 - 2—; +- )

to the integrals above. This series is valid for | arg(z)| < 37/4. Since we will
only be interested in values of z with positive real part, the series is valid
for our use.

For the right side of equation (2) the first term of the asymptotic series
is sufficient.

Claim 4. As y — oo,

1

/ Ay —6) c(6) db ~ m(1+y?)

Proof. Intuitively, as y becomes large, the function ¢(f) becomes very flat.
Multiplying by ¢(y —6) and integrating essentially samples the function c(0)
at y.

To prove this assertion, apply the asymptotic approximation

exp(—22
erfe(z) ~ Ii/(%z)



to equation (2). With a little rearrangement, the arguments inside the
exponential functions become zero and the integral reduces to

1 exp(0) n exp(0) _ 1
2210 \/%(%) \/7;<1\[+2@g) m(1+y2)

Next we apply the asymptotic series for erfc to equation (3).

Claim 5. Asy — oo,

- 2Y2 4 52(42 —
[ oo-omw~ 2 {L2F )

Proof. Here we apply the two-term asymptotic approximation

erfe(z) ~ ‘W (1 - 2;) .

As before, the arguments of the exponential functions become zero and
the integral reduces to

s (- (25)) - (- (39))

which further reduces to

y{(1+y2)2+02(y2—3)}‘

O]

Consider a single sample y from a normal(f, o) distribution where
has a conjugate normal(0, 72) prior. It is well-known that the posterior

distribution on # has mean )
-
T2 4 02 Y.



Claim 6. If we use a Cauchy(0, 1) prior rather than a normal(0, 72) prior
on 0 above, the posterior mean of 0 is

()

Proof. Simply take the ratio of the results of Claim 5 and Claim 4. O

as y — 00.

Next consider taking multiple samples y; from a normal(d, o2) distri-
bution. Denote the sample mean of the y; values by y. We examine the
posterior mean of # under normal and Cauchy priors as the number of sam-
ples n increases.

With a normal(0, 72) prior on @, the posterior mean of 6 after observing
n samples with mean 3 is

1 o? 1
7=1-—+0(=) )7
e (1)

nt?

Claim 7. If 0 has a Cauchy(0, 1) prior, then the posterior mean of 6 after
sampling n values with sample mean 7§ is

-, @ =3y’ 1
i+ a5 O )

Proof. Observing n values from a normal(f, o2) distribution is the same as
observing one value 7 from a normal(f, 02/n) distribution. The claim can
be established analogous to Claim 5 letting n — oo rather than y — co. [

The rate at which the posterior mean converges to 3 depends on 7 in the
case of the normal prior and on % in the case of the Cauchy prior. For any
value of 7, the convergence is faster under the Cauchy prior for sufficiently
large values of 7.
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