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Abstract

This report proves asymptotic results for the posterior mean when
sampling from a normal distribution with a Cauchy prior on the loca-
tion parameter.

1 Problem statement

Define

φ(θ;σ) =
1√
2πσ

exp
(
− θ2

2σ2

)
and

c(θ) =
1

π(1 + θ2)
.

Let yi be samples from a normal(θ, σ2) distribution where θ has a
Cauchy(0, 1) prior. Let y be the sample mean of the yi values. The posterior
mean of θ is given by ∫∞

−∞ θ φ(y − θ;σ/
√
n) c(θ) dθ∫∞

−∞ φ(y − θ;σ/
√
n) c(θ) dθ

.
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We will establish asymptotic results for the posterior mean of θ as y →∞
and as n→∞.

2 Preliminaries

2.1 Fourier transforms

We will use the following results from Fourier analysis to evaluate the in-
tegrals below. First, define the Fourier transform of a function f ∈ L1(R)
as

F(f)(x) =
1√
2π

∫ ∞
−∞

f(θ) exp(ixθ) dθ.

The inverse Fourier transform is then given by

F(f)(x) =
1√
2π

∫ ∞
−∞

f(θ) exp(−ixθ) dθ.

Define the convolution of two functions f and g by

(f ? g)(x) =
1√
2π

∫ ∞
−∞

f(θ) g(x− θ) dθ.

Then
f ? g = g ? f

and
F(f ? g) = F(f)F(g).

2.2 Integrating the exponential of a quadratic

We will also use the following result.

Claim 1. For a > 0 and b ∈ C,

∫ ∞
0

exp(−ax2 + bx) dx =

√
π exp

(
b2

4a

)
2
√
a

erfc
(
− b

2
√
a

)
. (1)
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Proof. Use the factorization

ax2 − bx =
(√

ax− b

2
√
a

)2

− b2

2a

to come up with the change of variables

w =
√
ax− b

2
√
a
.

Now∫ ∞
0

exp(−ax2 + bx) dx =
1√
a

∫ ∞
−b/2

√
a

exp(−w2) exp
(
b2

2a

)
dw

=
exp

(
b2

2a

)
√
a

∫ ∞
−b/2

√
a

exp(−w2) dw

=

√
π exp

(
b2

2a

)
2
√
a

2√
π

∫ ∞
−b/2

√
a

exp(−w2) dw

=

√
π exp

(
b2

4a

)
2
√
a

erfc
(
− b

2
√
a

)
.

3 Integration results

Claim 2.∫ ∞
−∞

φ(y − θ;σ) c(θ) dθ =
1

2
√

2πσ

{
h

(
1 + iy√

2σ

)
+ h

(
1− iy√

2σ

)}
(2)

where
h(z) = exp(z2) erfc(z).

Proof. The integral in equation (2) equals
√

2π(φ ? c)(y) and so its Fourier
transform is F(φ)F(c). These Fourier transforms are well known:

F(φ)(x) =
1√
2π

exp(−σ2x2/2)

F(c)(x) =
1√
2π

exp(−|x|).
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Applying the inverse Fourier transform we have the following.∫ ∞
−∞

φ(y − θ;σ) c(θ) dθ =
√

2π(φ ? c)(y)

= F−1(F(
√

2π(φ ? c)(y)))

=
1√
2π

∫ ∞
−∞

1√
2π

exp(−σ2x2 − |x| − ixy) dx

=
1

2π

∫ ∞
0

exp(−σ2x2/2− x− ixy) dx

+
1

2π

∫ 0

−∞
exp(−σ2x2/2 + x− ixy) dx.

The final two integrals can be evaluated in terms of the complementary error
function erfc using Claim 1.

Claim 3.∫ ∞
−∞

θφ(y − θ;σ) c(θ) dθ =
i

2
√

2πσ

{
h

(
1 + iy√

2σ

)
− h

(
1− iy√

2σ

)}
(3)

where as before
h(z) = exp(z2) erfc(z).

Proof. As before we take the Fourier transform of the integral and then
transform back. Define the function

η(θ) =
θ

π(1 + θ2)
.

Here we use the fact that

F(η)(x) =
i√
2π

x

|x|
exp(−|x|).

(The function η is not in L1(R) and so the elementary definition of the
Fourier transform does not hold. But η ∈ L2(R) and when the Fourier
transform is extended to L2(R), the right side of the equation above is its
transform.)

∫ ∞
−∞

θφ(y − θ;σ) c(θ) dθ =
√

2πφ ? η
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=
√

2πF−1

(
1√
2π

exp
(
−σ

2x2

2

)
i√
2π

x

|x|
exp(−|x|)

)
= i

∫ ∞
−∞

1
2π

x

|x|
exp(−σ2x2/2− |x| − ixy) dx

= i

∫ ∞
0

1
2π

exp(−σ2x2/2− x− ixy) dx

−i
∫ 0

−∞

1
2π

exp(−σ2x2/2 + x− ixy) dx.

As before, the final two integrals can be evaluated using Claim 1.

4 Asymptotic results

Next we apply the asymptotic series

erfc(z) =
exp(−z2)√

πz

(
1− 1

2z2
+ · · ·

)
to the integrals above. This series is valid for | arg(z)| < 3π/4. Since we will
only be interested in values of z with positive real part, the series is valid
for our use.

For the right side of equation (2) the first term of the asymptotic series
is sufficient.

Claim 4. As y →∞,∫ ∞
−∞

φ(y − θ) c(θ) dθ ∼ 1
π(1 + y2)

.

Proof. Intuitively, as y becomes large, the function c(θ) becomes very flat.
Multiplying by φ(y−θ) and integrating essentially samples the function c(θ)
at y.

To prove this assertion, apply the asymptotic approximation

erfc(z) ∼ exp(−z2)√
πz
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to equation (2). With a little rearrangement, the arguments inside the
exponential functions become zero and the integral reduces to

1
2
√

2πσ

 exp(0)
√
π
(

1−iy√
2σ

) +
exp(0)
√
π
(

1+iy√
2σ

)
 =

1
π(1 + y2)

.

Next we apply the asymptotic series for erfc to equation (3).

Claim 5. As y →∞,∫ ∞
−∞

θφ(y − θ) c(θ) dθ ∼ y

π

{
(1 + y2)2 + σ2(y2 − 3)

(1 + y2)3

}
.

Proof. Here we apply the two-term asymptotic approximation

erfc(z) ∼ exp(−z2)√
πz

(
1− 1

2z2

)
.

As before, the arguments of the exponential functions become zero and
the integral reduces to

1
2π

{
1

1− iy

(
1−

(
σ

1− iy

)2
)
− 1

1 + iy

(
1−

(
σ

1 + iy

)2
)}

which further reduces to

y

π

{
(1 + y2)2 + σ2(y2 − 3)

(1 + y2)3

}
.

Consider a single sample y from a normal(θ, σ2) distribution where θ
has a conjugate normal(0, τ2) prior. It is well-known that the posterior
distribution on θ has mean

τ2

τ2 + σ2
y.
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Claim 6. If we use a Cauchy(0, 1) prior rather than a normal(0, τ2) prior
on θ above, the posterior mean of θ is

y −O
(

1
y

)
as y →∞.

Proof. Simply take the ratio of the results of Claim 5 and Claim 4.

Next consider taking multiple samples yi from a normal(θ, σ2) distri-
bution. Denote the sample mean of the yi values by y. We examine the
posterior mean of θ under normal and Cauchy priors as the number of sam-
ples n increases.

With a normal(0, τ2) prior on θ, the posterior mean of θ after observing
n samples with mean y is

1
1 + σ2

nτ2

y =
(

1− σ2

nτ2
+O

(
1
n2

))
y.

Claim 7. If θ has a Cauchy(0, 1) prior, then the posterior mean of θ after
sampling n values with sample mean y is

y +
(y2 − 3)y
(1 + y2)2

σ2

n
+O

(
1
n2

)
.

Proof. Observing n values from a normal(θ, σ2) distribution is the same as
observing one value y from a normal(θ, σ2/n) distribution. The claim can
be established analogous to Claim 5 letting n→∞ rather than y →∞.

The rate at which the posterior mean converges to y depends on τ in the
case of the normal prior and on y in the case of the Cauchy prior. For any
value of τ , the convergence is faster under the Cauchy prior for sufficiently
large values of y.
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