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Bayesian Design of Single-Arm Phase II
Clinical Trials with Continuous Monitoring

Valen E. Johnson and John D. Cook

Abstract

Many “Bayesian” clinical trial designs use posterior credible intervals as tools
to define stopping boundaries for inferiority, futility, or superiority. However, the
thresholds on posterior credible intervals that trigger termination of a trial are
determined by frequentist operating characteristics. This practice can result in
substantial overlap between the credible intervals associated with, say, stopping a
trial for superiority and stopping a trial for inferiority, which severely limits the
interpretation of posterior probability statements. In this article, we use formal
Bayesian hypothesis tests to design single-arm phase II clinical trials. By using
non-local prior densities to define null and alternative models, we obtain exponen-
tial convergence of Bayes factors under both null and alternative models. When
compared to other commonly used Bayesian and frequentist designs, we show
that our method provides better operating characteristics, uses fewer patients per
correct decision, and provides more directly interpretable results. We also demon-
strate that designs based on Bayesian hypothesis tests eliminates a potential source
of bias often associated with Bayesian trial designs.
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Abstract

Many “Bayesian” clinical trial designs use posterior credible intervals as tools to

define stopping boundaries for inferiority, futility, or superiority. However, the thresh-

olds on posterior credible intervals that trigger termination of a trial are determined

by frequentist operating characteristics. This practice can result in substantial over-

lap between the credible intervals associated with, say, stopping a trial for superiority

and stopping a trial for inferiority, which severely limits the interpretation of posterior

probability statements. In this article, we use formal Bayesian hypothesis tests to de-

sign single-arm phase II clinical trials. By using non-local prior densities to define null

and alternative models, we obtain exponential convergence of Bayes factors under both

null and alternative models. When compared to other commonly used Bayesian and

frequentist designs, we show that our method provides better operating characteristics,
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uses fewer patients per correct decision, and provides more directly interpretable re-

sults. We also demonstrate that designs based on Bayesian hypothesis tests eliminates

a potential source of bias often associated with Bayesian trial designs.

Keywords: Simon two-stage design, Thall-Simon design, efficacy trial, Bayes factors,

Gibbs inequality, non-local prior density

1 Introduction

Bayesian methodology has recently played an increasingly prominent role in the conduct

of clinical trials, particularly in early phase clinical trials. Most of this development has

relied on Bayesian inferential techniques, usually premised on the assumption of weakly

informative or non-informative prior densities. Using such priors, decisions to terminate

clinical trials for futility, inferiority, or superiority are made by examining the content of

posterior credible intervals on response rates or survival times (e.g., Thall & Simon, 1994;

George et al. 1994; Heitjan, 1997; Thall et al. 1995; Fayers et al., 1997; Simon, 1999; Tan

& Machin, 2002; Thall et al., 2005). In practice, the thresholds above which the content

of a posterior credible interval triggers termination of a trial are determined by frequentist

operating characteristics, and the intervals defining superiority and inferiority often overlap.

This makes posterior probability statements derived from such trials difficult to interpret.

Paradoxically, although clinical trials represent statistical tests of the relative efficacy

of experimental therapies or diagnostic methods, Bayesian testing methodology is seldom

used in their design. We assert that this paradox stems from two sources: a misperception

surrounding the use of informative prior distributions to define alternative hypotheses, and

the resulting substitution of vague prior densities to achieve this purpose.

Bayesian hypothesis tests require the specification of full probability models for data
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and parameters under two or more competing models. Each probability model includes a

parametric sampling density for data and a prior density on model parameters. In an effort

to avoid “biasing” the result of a test, there is a temptation to specify vague or objective prior

densities on model parameters under the alternative hypothesis (e.g., Berger & Pericchi, 1996,

1998; Bertolino et al. 2000; O’Hagan, 1995, 1997; Moreno et al. 1998). As we demonstrate

below, however, mis-specification of the prior density under the alternative model can only

decrease the expected weight of evidence in favor of the alternative model. Thus, there is

no danger that proponents of an experimental treatment can bias the results of a Bayesian

test in favor of the alternative model by specifying an overly optimistic alternative model.

The use of vague prior specifications to define alternative models leads to the specification

of what might be called local alternative hypotheses. Informally speaking, local alternative

probability models are models that assign positive probability to regions of the parameter

space that are consistent with the null hypothesis. Under regularity conditions stated be-

low, the use of local alternative hypotheses leads to convergence rates of only Op(n
−1/2)

or slower in favor of true null hypotheses, but convergence at exponential rates in favor of

true alternative models. Thus, the use of local alternative hypotheses in clinical trials for

efficacy can make it essentially impossible to stop a trial in favor of a null hypothesis of no

beneficial treatment effect. It is probably for this reason that most Bayesian clinical trial

designs employ stopping rules based on posterior credible intervals rather than posterior

model probabilities.

The remainder of this article is organized as follows. In Section 2, we demonstrate that

mis-specification of the alternative model in a single-arm phase II trial increases the ex-

pected weight of evidence in favor of the null model of no (additional) treatment benefit. In

Section 3, we propose a new class of prior densities for the definition of alternative models

in single-arm phase II clinical trials with interim monitoring. This class of prior densities
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provides exponential convergence of Bayes factors in favor of both true null and true al-

ternative models. Examples of clinical trials designed using tests based on these priors are

presented in Section 4. Trials with both binary and time-to-event (TTE) patient outcomes

are considered, and comparisons are made to common Bayesian designs based on posterior

credible intervals. In Section 5 we compare our design to perhaps the most commonly used

frequentist design for trials with interim monitoring, the Simon two-stage design (Simon,

1989). We conclude with discussion and comments in Section 6.

2 An inequality for expected weight of evidence

Let x1, . . . , xn = {xn} denote independent and identically distributed random variables

representing n patient outcomes, and suppose that x1 has density function f(· |θ) with

respect to a q-dimensional parameter θ ∈ Θ ⊂ Rq. Define the null and alternative hypotheses

according to

H0 : θ ∼ π0(θ), H1 : θ ∼ π1(θ), (1)

respectively. The function π1 is assumed to be a continuous probability density function

defined with respect to Lebesgue measure, and π0 is assumed to be either a point mass

concentrated at, say, a known response rate θ0, or is also a continuous probability density

function defined with respect to Lebesgue measure. Let mi(xn), i = 0, 1, denote the marginal

density of the data xn under each hypothesis. That is,

mi(xn) =

∫
Θ

[
n∏
j=1

f(xj |θ)

]
πi(θ) dθ. (2)

If α denotes the prior odds in favor of the alternative hypothesis, then the posterior odds

between H1 and H0 given xn can be expressed

Pr(H1 |xn)

Pr(H0 |xn)
=
m1(xn)

m0(xn)
× α

1− α
. (3)

4

http://biostats.bepress.com/mdandersonbiostat/paper47



The first term on the right-hand side of (3) is the ratio of the marginal densities and is the

Bayes factor (BF) between the hypotheses. The logarithm of the BF is called the weight of

evidence.

The expected weight of evidence in a hypothesis test has the following property. Suppose

in the hypothesis test specified in (1) that the data-generating value of θ is actually drawn

from density πt, and let mt(xn) denote the corresponding marginal density of xn. If the

sample space does not depend on θ, then Gibbs’ inequality implies that∫
X
mt(xn) log

[
mt(xn)

m0(xn)

]
dxn −

∫
X
mt(xn) log

[
m1(xn)

m0(xn)

]
dxn

=

∫
X
mt(xn) log

[
mt(xn)

m1(xn)

]
dxn

≥ 0.

That is, ∫
X
mt(xn) log

[
mt(xn)

m0(xn)

]
dxn >

∫
X
mt(xn) log

[
m1(xn)

m0(xn)

]
dxn. (4)

Equality holds only if mt(xn) = m1(xn) almost everywhere. If the marginal density under

the null hypothesis is known—as it is assumed to be in a single-arm phase II clinical trial—

then mis-specification of the prior density assumed for the experimental treatment under

the alternative model decreases the expected weight of evidence in favor of the alternative

model. From a regulatory perspective, this means that investigators cannot manipulate

trial outcomes by specifying an overly optimistic prior in favor of the experimental treat-

ment. This situation contrasts sharply with inferential approaches toward summarizing trial

evidence—in which overly optimistic priors can introduce potentially serious biases in fa-

vor of the experimental treatment—and provides a strong argument in favor of designing

Bayesian trials using testing methodology rather than inferential techniques and posterior

credible intervals.
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3 Non-local alternative models

We now define classes of alternative models that provide exponential convergence of the

Bayes factor in favor of both true null and true alternative hypotheses.

Consider a test of the null hypothesis

H0 : θ ∼ π0(θ), (5)

where π0(θ) > 0 for all θ ∈ Θ0 ⊂ Θ ⊂ R and π0(θ) = 0 for all θ ∈ Θ − Θ0, versus the

alternative hypothesis

H1 : θ ∼ π1(θ), (6)

where π1(θ) > 0 for all θ ∈ Θ−Θ0, and for some ε, ζ > 0

π1(θ) > ε for all {θ ∈ Θ : inf
θ0∈Θ0

|θ − θ0| < ζ}. (7)

Condition (7) is the defining property of a local alternative hypothesis (or local alternative

prior density).

Similarly, if for every ε > 0 there exits ζ > 0 such that

π2(θ) < ε for all {θ ∈ Θ : inf
θ0∈Θ0

|θ − θ0| < ζ}, (8)

then we define π2 to be a non-local alternative prior density.

Most objective Bayesian testing methods result in local alternative priors, at least when

the null hypothesis is true. For example, fractional Bayes factors (O’Hagan, 1995, 1997)

and intrinsic Bayes factors (Berger and Pericchi, 1996, 1998) both produce local priors when

tested against true null hypotheses. Similarly, intrinsic priors (Bertolino et al. 2000) are

often centered on point null hypothesis values, and thus are also local.

Johnson and Rossell (2008) studied the large sample properties of BFs under local alter-

native models. Under regularity conditions that apply in most clinical trials, they demon-

strated that the convergence rate of the BF in favor of a local alternative hypothesis against
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a true point null hypothesis is only Op(n
−1/2), and that the posterior odds in favor of local

alternative hypothesis against true composite hypotheses is Op(1). In the latter case, this

means that the posterior odds are not consistent as the sample size n becomes large. Against

a false, non-local null hypothesis, however, convergence of the posterior odds in favor of the

alternative hypothesis occurs at exponential rate.

To counter the slow convergence rates in favor of true null hypothesis that obtain under

local alternative hypotheses, Johnson and Rossell (2008) proposed a class of inverse moment

(iMOM) prior densities. For the case of a point null hypotheses H0 : θ = θ0, members of

this alternative class of prior densities can be expressed as

πI(θ; θ0, k, ν, τ) =
kτ ν

Γ(ν/2k)

[
(θ − θ0)2

]− ν+1
2 exp

−
[(

θ − θ0

τ

)2
]−k (9)

for k, ν, τ > 0 and θ ∈ R. When the null hypothesis is true, the Bayes factor in favor of an

alternative hypothesis defined using an iMOM prior density, say BFn(1|0), satisfies

p lim
n→∞

n−k/(k+1) logBFn(1|0) = c, c < 0. (10)

Thus, convergence of the posterior odds to the true model occurs at exponential rate under

both true null and true alternative hypotheses when both models are assigned non-zero prior

probability.

The density function (9) has modes at

θ̂ = θ0 ± τ
[

2k

ν + 1

]1/2k

. (11)

For values of ν = 2k, the distribution function corresponding to density (9) is available in

closed form, which makes normalization of the density on restricted intervals straightforward.

This property is convenient when the range of θ values is restricted to, say, a subset of the

unit interval. Convenient default values for these parameters are k = 1 and ν = 2, for which

7
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the distribution function is

ΠI(θ; θ0, k, ν, τ) =


1
2
− 1

2
exp [−τ(θ − θ0)−2] , θ < θ0

1
2
, θ = θ0

1
2

+ 1
2

exp [−τ(θ − θ0)−2] , θ > θ0

(12)

The tails of the distribution are similar to the tails of a Student t distribution on 3 degrees of

freedom. A plot of this density for τ = 0.05, θ0 = 0.2, k = 1 and ν = 2 appears in Figure 1.

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

θθ

de
ns

ity

Figure 1: Illustration of iMOM density restricted to the interval (0,0.2). Parameters of this

density are θ0 = 0.2, τ = 0.05, k = 1, and ν = 2.

4 Examples

We begin by examining the performance of common credible-interval based designs to formal

test-based designs in single-arm, phase II clinical trials with either binary or time-to-event

outcomes and continuous monitoring. Single-arm trials refer to trials in which all patients
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receive a single, experimental therapy. Patient outcomes are then compared to responses ex-

pected under standard therapy. Continuous monitoring implies that a decision to terminate

a trial is made after each patient outcome is observed. In general, trials may be stopped

for superiority (the experimental treatment is judged to be better), inferiority (the standard

treatment is judged to be at least as good), or futility (it is unlikely the trial will produce

a conclusive result, given observed patient outcomes). Phase II trials represent the most

common design to which Bayesian methods are applied.

4.1 Phase II trials with binary outcomes

Suppose that an experimental treatment for a specific type of cancer is to be tested against

a standard treatment. Suppose further that historical data suggest that the response rate

achieved by the standard treatment follows a Beta(20, 80) distribution, and that the trial

sponsor expects to achieve approximately a 30% response rate with the experimental drug.

A maximum of 50 patients are available for enrollment, and all patients are assigned to treat-

ment with the experimental treatment. Patient outcomes are assumed to follow independent

Bernoulli distributions with success probability θ. For simplicity, we assume that patient

outcomes are known immediately following treatment.

To compare the operating characteristics of trial designs based on hypothesis tests to trials

based on designs based on posterior credible intervals, we consider the following hypothetical

trial designs.

Design 1. This design is based on a hypothesis test using the iMOM prior. Define null and

alternative hypotheses according to

H0 : θ = 0.2 versus H1 : π1(θ) ∝ πI(θ; 0.2, 1, 2, 0.015) I(0.2,1)(θ).

The alternative prior density is truncated to the interval (0.2, 1) and has a mode at

9
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0.3. Equal prior odds are assigned to null and alternative hypotheses, and the null

hypothesis has been represented by a point mass on 0.2. This trial is terminated after

the nth patient for superiority if Pr(H1 |xn) > 0.9, and is terminated for inferiority if

Pr(H0 |xn) > 0.9.

Design 2. This trial is a Thall and Simon (1994) design, an example of one of the most

commonly used single-arm Bayesian phase II designs for binary outcomes. Letting θS

denote response rate under standard therapy and assuming that θS ∼ Beta(200, 800),

this trial is stopped for superiority if Pr(θ > θS|xn) > 0.976, and is stopped for inferi-

ority if Pr(θ < 0.1 + θS) > 0.99. Following guidelines suggested by Thall and Simon,

the prior density assumed for θ in this design is assumed to be a Beta(0.6,1.4) distri-

bution, which corresponds to the “equivalent” of two observations having success rate

0.3. We note that the “superiority interval” and “inferiority interval” overlap on the

interval (0.2, 0.3). This means that it is possible to terminate the trial for superiority

(inferiority) even when the probability assigned to the inferiority (superiority) interval

substantially exceeds 0.5.

Design 3. This design is based on Heitjan (1997), another common Bayesian design that

permits continuous monitoring. An optimist’s prior for θ is assumed to be a Beta(1.3,

1.7) density, while a pessimist’s prior for θ is assumed to be a Beta(11, 41) distribution.

The trial is stopped for superiority if the pessimist’s posterior probability that θ exceeds

0.3 is 0.0023, and is stopped for inferiority if the optimist’s posterior probability that

θ is less than 0.2 exceeds 0.999.

Finally, we add a fourth trial as a straw man to illustrate the futility of designing trials using

vaguely specified local alternative models.

Design 4. This trial treats the pessimist and optimist priors specified in Design 3 as the
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null and alternative model for θ. Like Design 1, this trial stops when the probability

of either hypothesis exceeds 0.9.

The first three trials were designed to have similar type I errors when θ = 0.2 and power

when θ = 0.3. Each trial is considered inconclusive if no decision has been reached by

enrollment of patient 51. The decision rule for each trial is evaluated after the outcome of

each patient becomes available.
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Figure 2: Probabilities of concluding that a trial agent is inferior to a standard treatment,

when the standard treatment has success probability 0.2.

The operating characteristics of the four trial designs are depicted in Figures 2–4. Figure 2
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Figure 3: Probabilities of concluding that a trial agent is superior to a standard treatment,

when the standard treatment has success probability 0.2.

shows that the probability of stopping for inferiority is highest under Design 1 for all values of

θ < 0.3, although Design 3 does nearly as well. At the null value of 0.2, the probabilities that

Designs 1 and 3 stop for inferiority are 35% and 31% higher than Design 2. The frequentist

probabilities for stopping for superiority are displayed in Figure 3. Design 1 exhibits higher

probabilities of stopping for superiority for all values of θ > 0.2. At the targeted rate of 0.3,

it is 14% more likely to stop for superiority than Design 2, and 37% more likely to stop for

superiority than Design 3.
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Figure 4: Average number of patients accrued per trial, divided by the probability that the

trial resulted in a correct decision.

Results are mixed when the trial agent has a true response probability of 0.25. At this

value, Designs 1 and 3 are more likely to stop for inferiority than Design 2, while Design 1 is

also most likely to stop for superiority. Because the targeted success rate for the trial agent

was 0.3 in all three designs, it is not clear whether a value of 0.25 should be considered a

success.

We next compared the average number of patients used in each trial design. However,

comparisons between the expected numbers of patients used in credible-interval based de-
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signs and test-based designs are complicated by the fact that credible-interval based designs

terminate more frequently for an incorrect decision. To make such comparisons fair, we

calculated the ratio of the average number of patients treated to the probability of correctly

stopping the trial. In making this comparison, we assumed that it was correct to reject

the experimental treatment when θ < 0.3. Figure 4 displays these ratios. Design 1—the

test-based design—is most efficient for all values of θ according to this metric.

Finally, we note that Design 4 performs abysmally according to all criteria. Because of

the local alternative hypothesis, Design 4 never results in early termination of a trial for

inferiority. It is also much slower to conclude superiority for values of θ > 0.2. Because the

alternative hypothesis assigns prior mass to values of θ < 0.2, it is also likely to conclude

superiority for small values of θ. In those regions where Design 4 is able to appropriately

terminate a trial, the average number of patients required to make a correct decision is larger

than each of the other designs. Although an extreme example, this design illustrates the

pitfalls that arise if local prior densities are näıvely specified to define alternative hypotheses.

4.2 Phase II trials with TTE outcomes

We next consider a hypothetical single-arm trial of a experimental agent designed to prolong

progression free survival (PFS) in a given population of cancer patients. We assume that

the mean PFS under standard therapy is 6 months, and that the experimental agent is

hypothesized to extend this period to approximately 8 months. We suppose that PFS follows

an exponential distribution, and we let θ and θS denote the mean survival time in months for

the experimental and standard treatments, respectively. We consider two designs: one based

on hypothesis tests using an iMOM alternative prior, and the second based on posterior

credible intervals.

Design 5. Under the test-based design, the null and alternative hypotheses are defined
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according to

H0 : θ = 6 H1 : π1(θ) ∝ πI(θ; 6, 1, 2, 6) I(6,∞)(θ) (13)

The alternative prior density is an iMOM density truncated to the interval (6,∞) with

a mode at 8. Equal prior odds are assigned to the null and alternative hypotheses and

the null hypothesis is represented by a point mass at 6. This trial is terminated after

the n’th patient for superiority if Pr(H1 |xn) > 0.9, and is terminated for inferiority if

Pr(H0 |xn) > 0.9.

Design 6. This design is based on methodology described in Thall et al. (2005), and, like

its binary counterpart, represents one of the most commonly used single-arm Bayesian

phase II designs for TTE outcomes. In this trial, θS is assumed to be drawn from a

inverse gamma distribution with parameters 20 and 1200 (i.e., IG(200, 1200)), while θ

is assigned a IG(3, 12) prior distribution. Note that the prior means of both parameters

is approximately 6. This trial is stopped for superiority if

Pr(θS < θE |xn) ≥ 0.94,

and for inferiority if

Pr(θS + 2 < θE |xn) ≤ 0.07.

As in the previous example, enrollment for both trials is capped at 50, and trials not

stopped by patient 51 are considered inconclusive. Both trials have been specified so that

the probability of stopping for inferiority when θ = 8 is 0.2, and for stopping for superiority

when θ = 6 is 0.05. Stopping criteria are evaluated after the outcome of each patient becomes

known. As in Design 2, the superiority and inferiority intervals overlap in Design 6.

Figures 5 and 6 depict the probability that Designs 5 and 6 result in a conclusive termi-

nation of the trial when at most 50 patients are enrolled. As in the case of binary endpoints,

15
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the test-based design (Design 5) stops significantly more often for inferiority when the true

value of θE < 8, and stops for superiority more often when θE > 6 than does Design 6.

For example, when the experimental and standard treatments both yield six-month mean

survival time, Design 5 correctly concludes inferiority in 84% of trials, while Design 6 makes

this determination in only 67% of trials. Design 5 thus provides a 25% increase in the prob-

ability of a correct decision when the null hypothesis of no additional treatment benefit is

true.

Design 5, like Design 1 of the previous section, also has the advantage of providing a

clear interpretation of trial results. Namely, the posterior probability of each hypothesis

has an exact frequentist interpretation at the end of every trial. That is, among trials for

which the (final) posterior probability of the null hypothesis is p, in repeated sampling of

the full probability model there is exactly probability p that trial data was drawn from the

null model.

5 Comparison to Simon two-stage design

We conclude by comparing Bayesian test-based designs to an optimal frequentist two-stage

design (Simon, 1989). Assuming a null response rate of p0 = 0.20 and a targeted response

rate of p1 = 0.40, the parameters of both designs were chosen so that the Type I and II

errors were 5% and 20%, respectively. Under the optimality criterion described by Simon,

the two-stage design requires a maximum of 43 patients, 13 in the first stage and 30 in the

second.

The null hypothesis under the Bayesian design was assumed to be a point mass at θ = 0.2,

and the alternative hypothesis was represented by an iMOM density with τ = 0.26, k = 1 and

ν = 1. The Bayesian design utilized continuous monitoring and rejected the experimental
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treatment if the posterior probability of the alternative model dropped below 0.037. These

parameter values were selected so as to match the type I and II errors of the Simon design.

Enrollment under the Bayesian design was also restricted to be 43 patients.

As in the previous section, we compared the operating characteristics of these trials by

varying the true probability of response between 0 to 1 in increments of 0.05. For each

response probability, we simulated 10,000 trials. Denoting the Simon design by Design 7

and the Bayesian design by Design 8, Figure 7 shows that the probabilities of rejecting the

experimental treatments are similar under both designs. However, because the Bayesian

design performs continuous monitoring, it uses fewer patients to reject treatments that fall

below the targeted value of 0.4. This fact is illustrated in Figure 8, where two stopping

criteria for the Simon design have been implemented. In the “näıve Simon” design (Design

7a), a trial could be stopped only after 13 or 43 patients. In a simple modification of this

design, a trial was stopped as soon as it became clear that there would not be enough

successes to either continue the trial or to accept the experimental treatment at the end of

the study (Design 7b).

Figure 8 (as well as Figures 10 and 12 below) demonstrate a critical feature of the test-

based design: these deisgns enable earlier termination of trials of ineffective treatments. In

practice, this means that significantly fewer patients are deprived of the clinical benefit of

existing therapies.

Figures 9-10 provide similar comparisons to the Simon two-stage designs corresponding

p0 = 0.4 and p1 = 0.6; Figures 11-12 provide similar comparisons to the Simon two-stage

designs corresponding p0 = 0.3 and p1 = 0.4. These figures exhibit similar properties to

those described above for the case p0 = 0.2 and p1 = 0.4.

17

Hosted by The Berkeley Electronic Press



6 Discussion

A primary obstacle to the use of Bayesian clinical trial designs has been the hesitancy of

practitioners to specify prior distributions on model parameters. When inferences regarding

the outcome of a trial are based on posterior credible intervals, these concerns stem from

the fact that the prior density retains a direct influence on the posterior credible regions

reported, regardless of the outcome of the trial.

The situation is fundamentally different when viewed within the context of a Bayesian

hypothesis test. In this setting, the alternative hypothesis, by definition, represent the in-

vestigator’s belief regarding the distribution of the trial agent under an assumption that

the trial agent is effective. Such an assumption does not represent a bias; it simply reflects

the fact that—under the alternative hypothesis—the new treatment is assumed to be better

than the standard. Mis-specification of the alternative hypothesis has the effect of decreas-

ing the expected weight of evidence in favor of the experimental treatment, which means

that proponents of an experimental treatment cannot, on average, bias a test in favor of

the experimental treatment. The definition of BFs using the non-local prior distributions

proposed in this paper thus facilitates the conduct of clinical trials using Bayesian methods

by eliminating one of the major obstacles associated with their use.

For trials designed with fixed endpoints, it follows from the Neyman-Pearson lemma

that Bayesian testing procedures provide optimal tests of a specified size (recall that the

marginal density of the data is explicitly defined under both null and alternative models

within the Bayesian paradigm). Although the Neyman-Pearson result does not extend to

trials with continuous monitoring, results presented in this article suggest that Bayesian

test-based designs provide better operating characteristics than trials designed using either

posterior credible intervals or Simon two-stage designs. Test-based designs also provide a

cleaner interpretation of trial outcomes. As mentioned earlier, among trials for which the
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posterior probability of the null hypothesis is p, in repeated sampling of the full probability

model there is exactly probability p that trial data were drawn from the null model.

Finally, we note that software to design phase II single-arm trials using iMOM specifica-

tion of alternative hypotheses is available at

http://biostatistics.mdanderson.org/SoftwareDownload/. The program nonlocal1 provides

stopping boundaries based on iMOM parameters as user input, while nonlocal2 provides

stopping boundaries that provide specified type I and II errors against specified point null

and alternative hypotheses.
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Figure 5: Probabilities of concluding that a trial agent is inferior to a standard treatment,

when the standard treatment produces a mean survival time of 6 months.
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Figure 6: Probabilities of concluding that a trial agent is superior to a standard treatment,

when the standard treatment produces a mean survival time of 6 months.
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Figure 7: Probabilities of concluding that a trial agent is inferior to a standard treatment,

when the standard treatment has success probability 0.2. The curve for the Simon two-stage

design is denoted by Design 7, while the curve corresponding to the Bayesian hypothesis test

is denoted by Design 8.
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Figure 8: Number of patients treated as the true probability of response varies when the

standard treatment has success probability 0.2. The curve labeled Design 8 represents the

operating characteristics of the Bayesian design, while curves labeled Design 7a and 7b corre-

spond to the operating characteristics of the näıve and modified Simon designs, respectively.
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Figure 9: Probabilities of concluding that a trial agent is inferior to a standard treatment,

when the standard treatment has success probability 0.4 and the alternative hypothesis is

0.6. The curve for the Simon two-stage design is denoted by Design 9, while the curve

corresponding to the Bayesian hypothesis test is denoted by Design 10.
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Figure 10: Number of patients treated as the true probability of response varies when the

standard treatment has success probability 0.4 and the alternative hypothesis is 0.6. The

curve labeled Design 10 represents the operating characteristics of the Bayesian design, while

curves labeled Design 9a and 9b correspond to the operating characteristics of the näıve and

modified Simon designs, respectively.
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Figure 11: Probabilities of concluding that a trial agent is inferior to a standard treatment,

when the standard treatment has success probability 0.3 and the alternative hypothesis is

0.4. The curve for the Simon two-stage design is denoted by Design 11, while the curve

corresponding to the Bayesian hypothesis test is denoted by Design 12.
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Figure 12: Number of patients treated as the true probability of response varies when the

standard treatment has success probability 0.3 and the alternative hypothesis is 0.4. The

curve labeled Design 12 represents the operating characteristics of the Bayesian design, while

curves labeled Design 11a and 11b correspond to the operating characteristics of the näıve

and modified Simon designs, respectively.
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