This page is an index to articles on the site about Benford’s law. Benford’s law and probability distributions Pareto distribution Weibull distribution Cauchy distribution Benford’s law and number theory Leading digits of powers of two Gelfand’s question Leading digits of factorials Benford’s law and computer science Collatz 3n+1 conjecture Benford’s law and statistics Benford’s law […]

The Pareto probability distribution has density for x ≥ 1 where a > 0 is a shape parameter. The Pareto distribution and the Pareto principle (i.e. “80-20” rule) are named after the same person, the Italian economist Vilfredo Pareto. Samples from a Pareto distribution obey Benford’s law in the limit as the parameter a goes to […]

This is the third, and last, of a series of posts on Benford’s law, this time looking at a famous open problem in computer science, the 3n + 1 problem, also known as the Collatz conjecture. Start with a positive integer n. Compute 3n + 1 and divide by 2 repeatedly until you get an odd […]

Introduction to Benford’s law In 1881, Simon Newcomb noticed that the edges of the first pages in a book of logarithms were dirty while the edges of the later pages were clean. From this he concluded that people were far more likely to look up the logarithms of numbers with leading digit 1 than of […]

A while back I wrote about how the leading digits of factorials follow Benford’s law. That is, if you look at just the first digit of a sequence of factorials, they are not evenly distributed. Instead, 1’s are most popular, then 2’s, etc. Specifically, the proportion of factorials starting with n is roughly log10(1 + 1/n). […]

Imagine you picked up a dictionary and found that the pages with A’s were dirty and the Z’s were clean. In between there was a gradual transition with the pages becoming cleaner as you progressed through the alphabet. You might conclude that people have been looking up a lot of words that begin with letters […]

According to this paper [1], the empirical distribution of real passwords follows a power law [2]. In the authors’ terms, a Zipf-like distribution. The frequency of the rth most common password is proportional to something like 1/r. More precisely, fr = C r–s where s is on the order of 1. The value of s that […]

You can find a large collection of physical constants in scipy.constants. The most frequently used constants are available directly, and hundreds more are in a dictionary physical_constants. The fine structure constant α is defined as a function of other physical constants: The following code shows that the fine structure constant and the other constants that […]

The first digit of a power of 2 is a 1 more often than any other digit. Powers of 2 begin with 1 about 30% of the time. This is because powers of 2 follow Benford’s law. We’ll prove this below. When is the first digit of 2n equal to k? When 2n is between […]

Introduction Samples from a Cauchy distribution nearly follow Benford’s law. I’ll demonstrate this below. The more data you see, the more confident you should be of this. But with a typical statistical approach, crudely applied NHST (null hypothesis significance testing), the more data you see, the less convinced you are. This post assumes you’ve read the […]

Notes on various math and software topics Table of contents Math diagrams Numerical computing Probability Differential equations Python Probability approximations Regular expressions C++ Special functions Typesetting: TeX, HTML, Unicode Emacs R Miscellaneous math Math diagrams Diagram of probability distribution relationships Modes of convergence Topological properties diagram Category Relationships in Mathematical Physics Category theory definition […]

My previous post looked at a problem that requires repeatedly finding the first digit of kn where k is a single digit but n may be on the order of millions or billions. The most direct approach would be to first compute kn as a very large integer, then find it’s first digit. That approach […]

Gelfands’s question asks whether there is a positive integer n such that the first digits of jn base 10 are all the same for j = 2, 3, 4, …, 9. (Thanks to @republicofmath for pointing out this problem.) This post will explore Gelfand’s question via probability. The MathWorld article on Gelfand’s question says that […]

Suppose you take factorials of a lot of numbers and look at the leading digit of each result. You could argue that there’s no apparent reason that any digit would be more common than any other, so you’d expect each of the digits 1 through 9 would come up 1/9 of the time. Sounds plausible, […]