Benford’s law

This page is an index to articles on the site about Benford’s law. Benford’s law and probability distributions Pareto distribution Weibull distribution Cauchy distribution Benford’s law and number theory Leading digits of powers of two Gelfand’s question Leading digits of factorials Benford’s law and computer science Collatz 3n+1 conjecture Benford’s law and statistics Benford’s law […]

The 3n+1 problem and Benford’s law

This is the third, and last, of a series of posts on Benford’s law, this time looking at a famous open problem in computer science, the 3n + 1 problem, also known as the Collatz conjecture. Start with a positive integer n. Compute 3n + 1 and divide by 2 repeatedly until you get an odd […]

Benford’s law and SciPy

Imagine you picked up a dictionary and found that the pages with A’s were dirty and the Z’s were clean. In between there was a gradual transition with the pages becoming cleaner as you progressed through the alphabet. You might conclude that people have been looking up a lot of words that begin with letters […]

Passwords and power laws

According to this paper [1], the empirical distribution of real passwords follows a power law [2]. In the authors’ terms, a Zipf-like distribution. The frequency of the rth most common password is proportional to something like 1/r. More precisely, fr = C r–s where s is on the order of 1. The value of s that […]

Books and revealed preferences

Revealed preferences are the preferences we demonstrate by our actions. These may be different from our stated preferences. Even if we’re being candid, we may not be self-aware. One of the secrets to the success of Google’s PageRank algorithm is that it ranks based on revealed preferences: If someone links to a site, they’re implicitly […]

Any number can start a factorial

Any positive number can be found at the beginning of a factorial. That is, for every positive integer n, there is an integer m such that the leading digits of m! are the digits of n. There’s a tradition in math to use the current year when you need an arbitrary numbers; you’ll see this […]

Progress on the Collatz conjecture

The Collatz conjecture is for computer science what until recently Fermat’s last theorem was for mathematics: a famous unsolved problem that is very simple to state. The Collatz conjecture, also known as the 3n+1 problem, asks whether the following function terminates for all positive integer arguments n. def collatz(n): if n == 1: return 1 […]