Exact calculation of inequality probabilities

John D. Cook
Department of Biostatistics
P. O. Box 301402, Unit 1409
The University of Texas, M. D. Anderson Cancer Center
Houston, Texas 77230-1402, USA
cook@mdanderson.org

November 16, 2009

Abstract

This note surveys results for computing the inequality probability $$
P(X>Y)
$$ in closed form where X and Y are independent continuous random variables. Distribution families discussed include - normal, - Cauchy, - gamma, - inverse gamma, - Lévy, - folded normal, and - beta.

Mixture distributions are also discussed.

1 Normal and Cauchy random variables

The probability

$$
P(X>Y)
$$

can be evaluated simply when X and Y are either both normal or both Cauchy random variables. These probabilities are derived in [1].

If X is normal with mean μ_{X} and variance σ_{X}^{2}, and Y is normal with mean μ_{Y} and variance σ_{Y}^{2}, then

$$
P(X>Y)=\Phi\left(\frac{\mu_{X}-\mu_{Y}}{\left(\sigma_{X}^{2}+\sigma_{Y}^{2}\right)^{1 / 2}}\right)
$$

where $\Phi(x)$ is the CDF of a standard normal random variable.
If X is Cauchy with location μ_{X} and scale σ_{X}, and Y is Cauchy with location μ_{Y} and scale σ_{Y}, then

$$
P(X>Y)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}\left(\frac{\mu_{X}-\mu_{Y}}{\sigma_{X}+\sigma_{Y}}\right) .
$$

2 Gamma, inverse gamma, and Lévy random variables

If X has a gamma $\left(\alpha_{X}, \beta_{X}\right)$ distribution and Y has a gamma $\left(\alpha_{Y}, \beta_{Y}\right)$ distribution then

$$
P(X>Y)=P\left(B<\frac{\beta_{X}}{\beta_{X}+\beta_{Y}}\right)=I_{\beta_{X} /\left(\beta_{X}+\beta_{Y}\right)}\left(\alpha_{Y}, \alpha_{X}\right)
$$

where $B \sim \operatorname{beta}\left(\alpha_{Y}, \alpha_{X}\right)$ and $I_{x}(a, b)$ is the regularized incomplete beta function. This result first appeared in [1].

If X has an inverse gamma distribution, $1 / X$ has a gamma distribution. Therefore inverse gamma inequality probabilities can be reduced to gamma inequality probabilities since

$$
P(X>Y)=P(1 / Y>1 / X)
$$

A Lévy distribution with scale c is the same as an inverse gamma distribution with shape $1 / 2$ and scale $c / 2$, and so inequalities with Lévy distributions are a special case of inequalities with inverse gamma distributions.
(There are multiple conventions for parameterizing gamma and inverse gamma distributions. The results here assume the density of a gamma (α, β) random variable is proportional to $x^{\alpha-1} \exp (-x / \beta)$. Also, the density of an inverse gamma (α, β) random variable is proportional to $x^{-\alpha-1} \exp (-\beta / x)$.)

3 Folded normal random variables

A folded normal random variable is the absolute value of a normal random variable. Therefore folded normal random inequalities reduce to computing $P(|X|>|Y|)$ where X and Y are normal.

Suppose X is $\operatorname{normal}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and Y is $\operatorname{normal}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. If $\sigma_{X}^{2}=\sigma_{Y}^{2}$ then $P(|X|>|Y|)$ can be computed as follows. Let $U=X+Y$ and $V=X-Y$. Then

$$
\begin{aligned}
U & \sim N\left(\mu_{U}, \sigma_{U}^{2}\right)=N\left(\mu_{X}+\mu_{Y}, \sigma_{X}+\sigma_{Y}\right) \\
V & \sim N\left(\mu_{V}, \sigma_{V}^{2}\right)=N\left(\mu_{X}-\mu_{Y}, \sigma_{X}+\sigma_{Y}\right)
\end{aligned}
$$

When $\sigma_{X}^{2}=\sigma_{Y}^{2}$, we have

$$
\begin{equation*}
\operatorname{Pr}(|X|>|Y|)=\Phi\left(-\frac{\mu_{U}}{\sigma_{U}}\right) \Phi\left(-\frac{\mu_{V}}{\sigma_{V}}\right)+\Phi\left(\frac{\mu_{U}}{\sigma_{U}}\right) \Phi\left(\frac{\mu_{V}}{\sigma_{V}}\right) . \tag{1}
\end{equation*}
$$

See [4] for a derivation of the above result as well as a method for evaluating $P(|X|>|Y|)$ when the variances of X and Y are not equal.

4 Beta random variables

In general $P(X>Y)$ cannot be evaluated in closed form if X and Y have beta distributions. However, many special cases do have closed form expressions. Let $X \sim \operatorname{beta}(a, b)$ and $Y \sim \operatorname{beta}(c, d)$. Define

$$
g(a, b, c, d)=P(X>Y) .
$$

The function $g(a, b, c, d)$ can be evaluated in closed form if

- one of the four parameters a, b, c, or d is an integer,
- the fractional parts of the parameters sum to 1 , or
- $a+b$ and $c+d$ are positive integers.

The symmetries

$$
g(a, b, c, d)=g(d, c, b, a)=g(d, b, c, a)=1-g(c, d, a, b)
$$

are developed in [1]. For the 24 permutations of the 4 arguments, there are at most six different values of g. These are $g(a, b, c, d), g(a, b, d, c), g(a, c, d, b)$ and their complementary probabilities.

If we define

$$
\begin{align*}
h(a, b, c, d) & =\frac{B(a+c, b+d)}{B(a, b) B(c, d)} \tag{2}\\
& =\frac{\Gamma(a+c) \Gamma(b+d) \Gamma(a+b) \Gamma(c+d)}{\Gamma(a) \Gamma(b) \Gamma(c) \Gamma(d) \Gamma(a+b+c+d)} \tag{3}
\end{align*}
$$

then [1] shows that the following recurrence relations hold:

$$
\begin{aligned}
g(a+1, b, c, d) & =g(a, b, c, d)+h(a, b, c, d) / a \\
g(a, b+1, c, d) & =g(a, b, c, d)-h(a, b, c, d) / b \\
g(a, b, c+1, d) & =g(a, b, c, d)-h(a, b, c, d) / c \\
g(a, b, c, d+1) & =g(a, b, c, d)+h(a, b, c, d) / d .
\end{aligned}
$$

The identity

$$
g(a, b, c, 1)=\frac{\Gamma(a+b) \Gamma(a+c)}{\Gamma(a+b+c) \Gamma(a)}
$$

is derived in [2]. The symmetries and recurrence relationships above can be used to bootstrap this result into a closed form evaluation of g when any one of its arguments is an integer.

If $a+b+c+d=1$, then [2] shows that

$$
g(a, b, c, d)=\frac{\sin (\pi a) \sin (\pi d)}{\sin (\pi(a+b)) \sin (\pi(b+d))} .
$$

Symmetry and recurrence relationships can extend this result to compute g for any arguments whose fractional parts sum to 1 .

Finally, if $a+b=c+d=1$ and $a+c \neq 1$ then

$$
g(a, b, c, d)=\frac{\Gamma(a+c) \Gamma(b+d) \sin (\pi a 1) \sin \left(\pi b_{2}\right)}{\pi^{2}} \frac{c(\psi(c)-\psi(1-a))}{a+c-1}
$$

where ψ is the digamma function. As before, this result can be extended by using symmetry and recurrence relationships.

For more information regarding beta inequalities, see [2] and [3].

5 Mixture distributions

If $P(X>Y)$ can be computed in closed form for distributions X and Y from a particular family, then it can also be computed in closed form for mixtures of distributions from that family.

Suppose

$$
f_{X}=\sum_{i=1}^{n} \lambda_{i} f_{X_{i}}
$$

and

$$
f_{Y}=\sum_{j=1}^{m} \theta_{j} f_{Y_{j}}
$$

where $\lambda_{i} \geq 0, \theta_{i} \geq 0$, and

$$
\sum_{i=1}^{n} \lambda_{i}=\sum_{j=1}^{m} \theta_{j}=1
$$

Then

$$
P(X>Y)=\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} \theta_{j} P\left(X_{i}>Y_{j}\right)
$$

References

[1] John D. Cook. Numerical computation of stochastic inequality probabilities (2003). UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series. Working Paper 46.
[2] John D. Cook. Exact calculation of beta inequalities (2005). Technical Report UTMDABTR-005-05.
[3] John D. Cook and Saralees Nadarajah. Stochastic Inequality Probabilities for Adaptively Randomized Clinical Trials. Biometrical Journal. 48 (2006) pp 256-365.
[4] John D. Cook. Inequality Probabilities for Folded Normal Random Variables (2009). UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series. Working Paper 52.

