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Abstract

We examine the effect of a parameter λ used to calibrate how respon-

sive randomization probabilities are to observed data in an adaptively

randomized clinical trial. We define and motivate the parameter λ and

demonstrate how varying this parameter effects the operating character-

istics of example clinical trial designs.

1 Introduction

Let A and B be two treatments in an adaptively randomized trial, and let θi be

the probability of response on arm i where i is A or B. The simplest adaptive

randomization scheme is to assign arm i with probability

p = P (θi > θj |data).
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A generalization of this approach is to raise this inequality probability to some

power and renormalize, assigning arm i with probability

f(p, λ) =
pλ

pλ + (1− p)λ

for a given 0 ≤ λ ≤ ∞. When λ = 1, f(p, λ) is simply p.

The parameter λ is called a tuning parameter because it controls the degree

to which the randomization probabilities are influenced by the data. When

λ = 0, the method reduces to equal randomization. As λ → ∞ the method

approaches myopic optimization, assigning each patient the arm which looks

best at the time the patient enrolls.

We first explore some of the elementary properties of the function f(p, λ).

Then we illustrate how λ effects the operating characteristics of a clinical trial.

We will show that generally as λ increases, the number of patients treated on the

superior arm increases while the probability of correctly selecting the superior

arm decreases. However, for small values of λ, the number of patients on the

superior arm increases rapidly while statistical power decreases only slowly.

The simulation results presented in this paper were computed using the

Adaptive Randomization software available at [1].

2 Basic properties

To understand how the function f behaves, we start with a simple example.

Suppose P (θA > θB |data) = 0.7 given the current data. If λ = 1, arm A would

be assigned with probability 0.7. If λ = 1/2, arm A would be assigned with

probability 0.60, and if λ = 2, arm A would be assigned with probability 0.84.

We now make some more general observations about the function f . First
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of all, f(1/2, λ) = 1/2 for all values of λ. If two arms are equally effective,

they will be assigned with equal probability, regardless of the tuning parameter

value.

Next, note that for any p, f(p, 0) = 1/2. This means that setting λ = 0

corresponds to equal randomization: arms A and B are each assigned with

probability 1/2 regardless of P (θi > θj |data). In this case the “adaptive”

randomization algorithm is not adaptive at all.

Finally, note that limλ→∞ f(p, λ) is 0 if p < 1/2 and 1 if p > 1/2. This says

that setting λ = ∞ corresponds to myopic optimization: the arm with higher

probability of response is assigned with probability 1. In this case the adaptive

“randomization” is actually deterministic.

The above observations show that our tuning parameter could be called an

interpolation parameter, interpolating between equal randomization and myopic

optimization. For small values of λ, adaptive randomization behaves more like

equal randomization and for large values of λ, adaptive randomization behaves

more like myopic optimization. In practice, moderate values such as λ = 1 can

give the best of both worlds: power and bias comparable to equal randomization,

while also assigning significantly more patients to the superior arm on average.

See [2] for analysis of adaptive randomization trials using λ = 1.

We give a few graphs illustrating how f(p, λ) behaves between the extremes

discussed above. First, we set λ = 1/2 and show how f(·, 1/2) increases small

probabilities and decreases large probabilities in Figure 1, adding the line y = x

for comparison. Next, we set λ = 2 and show in Figure 2 how f(·, 2) makes small

probabilities smaller and makes large probabilities larger. Finally, in Figures 3

and 4 we show the effect of varying values of λ for p = 0.3 and p = 0.7.
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Figure 1: λ = 1/2, p varying

Figure 2: λ = 2, p varying

Figure 3: p = 0.3, λ varying
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Figure 4: p = 0.7, λ varying

3 Operating characteristics

To illustrate the effect of λ on operating characteristics, we simulated a two-arm

trial with a maximum of 80 patients. We assumed the response probabilities θi

are distributed a priori as beta(0.6, 1.4). If at any point in the trial

P (θi > θj |data) > 0.95

we end the trial, selecting treatment i as the superior treatment. If we reach the

maximum number of patients without either arm satisfying the above inequality,

we declare the trial inconclusive. We simulated the trial 10,000 times for each

value of λ from 0 to 4 in increments of 0.1 and present the average behavior.

In each scenario, we assume the true probability of response on arm 1 is 0.2.

In Scenario 1, the true probability of response on arm 2 is 0.3. In Scenario 2,

the true probability of response on arm 2 is 0.4.

We assume patient responses are recorded immediately. It would be more

realistic to model the arrival of patients as a Poisson process and a delay in

observing patient outcomes. (The Adaptive Randomization software from [1]
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Figure 5: Scenario 1, no stopping rule, correct selection probability

supports such simulations.) However, arrival rates and observation windows are

peculiar to a specific clinical trial. We avoid these issues in order to present

generic examples.

We first present the results for the design without a stopping rule, accruing

the maximum enrollment 80 patients in each simulation. This is intended, not to

recommend trials without stopping rules, but to show the limiting behavior of as

stopping rules become more difficult to satisfy. We follow this by including the

stopping rule above. This rule stops trials rather often and so is complementary

to the example without a stopping rule.

3.1 Simulation results without early stopping rule

Figure 5 shows the probability of correctly selecting the superior arm under

Scenario 1 as λ varies. The correct selection probability is essentially constant

for λ between 0 and 1 then degrades for larger values. For λ = ∞ the correct

selection probability is 0.052.

Figure 6 shows the expected number of patients treated on the superior arm

6

http://biostats.bepress.com/mdandersonbiostat/paper27



Figure 6: Scenario 1, no stopping rule, patients on superior arm

also for Scenario 1. Since there is no stopping rule, the balance of the 80 patients

would be treated on the inferior arm. Aside from simulation noise, the curve

rises rapidly to a peak and then slowly declines. The number of patients on the

superior arm with λ = ∞ is 51.0.

Figures 7 and 8 are the corresponding results under Scenario 2. The correct

selection probability continues to decline for larger values of λ, reaching 0.115

at λ = ∞. As in Scenario 1, the number of patients on the superior arm rises

rapidly with λ, reaches a plateau and slowly declines. For λ = ∞, the average

number of patients on the superior arm is 59.1.

3.2 Simulation results with early stopping rule

We now add the possibility of early stopping and consider the same two scenarios

as above.

Figure 9 shows the probability of correctly selecting the superior arm under

Scenario 1 as λ varies. At λ = ∞ the selection probability is 0.135.

Figure 10 shows the expected number of patients treated on the superior
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Figure 7: Scenario 2, no stopping rule, correct selection probability

Figure 8: Scenario 2, no stopping rule, patients on superior arm

Figure 9: Scenario 1 with stopping rule, correct selection probability
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Figure 10: Scenario 1 with stopping rule, patients on each arm

arm also for Scenario 1. The dashed line corresponds to the inferior arm and

the solid line corresponds to the superior arm. The number of patients assigned

to the inferior arm reaches a minimum around λ = 1 and then increases. The

number assigned to the superior arm increases to a plateau and slowly declines.

At λ = ∞, an average of 27.9 patients are treated on the inferior arm and 43.1

on the superior arm.

Figures 11 and 12 are the corresponding results under Scenario 2. The

correct selection probability declines to 0.244 at λ = ∞. In Figure 12, as in

Figure 10 above, the dashed line corresponds to the inferior arm and the solid

line corresponds to the superior arm. As in Scenario 1, the number of patients

on the inferior arm reaches a minimum and then increases. The number of

patients on the superior arm rises sharply as before, but appears approximately

constant once it reaches a maximum. At λ = ∞, 19.7 patients would be treated

on the inferior arm and 45.0 on the superior arm.
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Figure 11: Scenario 2 with stopping rule, correct selection probability

Figure 12: Scenario 2 with stopping rule, patients on each arm
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4 Discussion

Adaptive randomization designs range between equal randomization when λ = 0

and myopic optimization when λ = ∞. The examples given here suggest that

as λ increases, the probability of correctly selecting the superior arm decreases,

though slowly at first. The number of patients treated on the superior arm

increases rapidly, reaches a plateau, and slowly declines. Values of λ near 1

result in power comparable to that of equal randomization while assigning sub-

stantially more patients to the superior treatment. In some cases the number

of patients assigned to the superior treatment could be increased still more by

using a somewhat larger value of λ, though at a substantial loss of power. Very

large values of λ have little to recommend them since one may achieve more

power and assign more patients to the better arm by using a moderate value.

While the number of patients assigned to the superior arm generally increases

as λ increases, it does not follow that the number of patients assigned to the

inferior decreases since the expected sample size also increases with λ.

In our experience, the most commonly used value of λ is 1, though we have

seen values of λ as large as 2. Some trials use a smaller value such as λ = 1/2.

It is common to have a burn-in period of equal randomization before starting to

imbalance the randomization probabilities. In this case, the tuning parameter

is actually a function λ of the patient accrual number n. If N is the number of

patients to randomize equally then λ(n) = [n > N ]λ0 where λ0 is the nominal

tuning parameter. Wathen [3] has proposed allowing λ to increase gradually as

a function of n rather than as a step function.

The choice of λ must be made in the context of a specific clinical trial

and evaluated by a simulation study. We suggest one begin by comparing the
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results of simulations using λ = 0 and λ = 1. Then the results presented here

will suggest whether one should consider values of λ greater or less than 1.
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