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Fast Approximation of Inverse Gamma
Inequalities
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Abstract

Bayesian clinical trial methods sometimes use a conjugate exponential-inverse
gamma model for event times. Random inequalities between posterior inverse
gamma distributions are used to determine stopping conditions, for example in
[1]. Computing these inequalitiy probabilities accounts for nearly all of the com-
putation time used in simulating such trials. This report presents an approximation
that could reduce this time by two orders of magnitude.
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Abstract

Bayesian clinical trial methods sometimes use a conjugate exponential-
inverse gamma model for event times. Random inequalities between
posterior inverse gamma distributions are used to determine stopping
conditions, for example in [1]. Computing these inequalitiy probabili-
ties accounts for nearly all of the computation time used in simulating
such trials. This report presents an approximation that could reduce
this time by two orders of magnitude.

1 Approximation

When X and Y are independent inverse gamma random variables, the in-
equality
P(X >Y)

can be computed in closed form [2]. However, the probability
P(X>Y +9)

requires numerical integration when § > 0.

The idea presented here is simply to approximate the distribution on
Y + 6 by the distribution on an inverse gamma random variable with the
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same and variance. That is,
P(X >Y +4)~P(X >Y5),

evaluating the later exactly using the closed-form solution mentioned above.

If Y has mean p and variance o2, the Y5 has mean u 4 § and variance
o2. This implies the shape parameter of Yj is

2
QZM+2
o

and the scale parameter is
B =(a—1)(u+S5).

Matching moments to define Y5 assumes that the first two moments of Y’
exist. In practice, Y often has a large shape parameter and so this is not a
concern. (In the safety monitoring application developed in [1], Y represents
what is known regarding a historical control. The shape parameter is the
effective sample size and so is typically large, say on the order of 100 or
larger.)

2 Error estimation

Let fx denote the PDF of X and Fy the CDF of Y. Let Fj5 be the CDF of
Ys. Then

IP(X>Y +6) - P(X >Y;)| =

/;o Fx(@) (Fy (z — §) — Fy(x)) do

[ 1406 1 o= 8) — (o)
< max |Fy (z — 6) — Fs()]

IN

This gives an upper bound on the approximation error independent of
X. However, as we will see in the next section, it is a pessimistic error

bound.
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3 Illustration

To illustrate the accuracy of the proposed approximation, let Y inverse
gamma with shape 100 and scale 99. This makes E(Y) = 1. Rescaling
does not effect the accuracy, so we can always rescale to make the mean 1.
The variance of Y is 1/98. We pick § = 0.1, approximately the standard
deviation of Y.

The following graph plots Fy (z — 0) — Fs(x).

0.0025 T T . . .

0.0020

0.0015

0.0010 1

0.0005

0.0000

—-0.0005

—-0.0010

_O'GOIB.O 0.5 1.0 15 2.0 2.5 3.0

The maximum absolute difference between the two functions is about
0.0025. However, to achieve this error bound, fx would have to be a point-
mass concentrated near 1.1. In practice, the distribution on Y would be
compared to distributions on X that are fairly dispersed, no more concen-
trated than Y. In this case the positive and negative differences between
Fy(z — ) and Fs(x) would largely cancel.

We computed the error in approximating P(X > Y + ) by P(X > Ys),
varying the shape and scale of X. We let the shape vary from 1 to 100 and
the scale from 1 to 200. The maximum error occurs when the shape is 100
and the scale is 88.489. At that point the true inequality value is 0.06194
and the approximate value is 0.06240, a difference of 0.00046, about 5 times
smaller than the upper bound on error given in the previous section. The
average error over the same region is 0.0000453 which is about 10 times
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smaller than the maximum error.
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