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The Effect of Population Drift on Adaptively
Randomized Trials

John D. Cook

Abstract

Adaptively randomized trials aim to treat patients in clinical trials more effec-
tively by increasing the probability of assigning treatments that appear to have a
higher probability of response. Studies of adaptive randomization to date have as-
sumed constant probabilities of response on each treatment. This paper examines
the effect of response probabilities that change over time due to population drift.
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Abstract

Adaptively randomized trials aim to treat patients in clinical trials
more effectively by increasing the probability of assigning treatments
that appear to have a higher probability of response. Studies of adap-
tive randomization to date have assumed constant probabilities of re-
sponse on each treatment. This paper examines the effect of response
probabilities that change over time due to population drift.

1 Introduction

Clinical trials implicitly assume static population characteristics, and yet
populations may change over time. Change could be gradual, such as an
increasing proportion of patients being treated in early stages of their disease
due to advances in diagnosis. Change could also be sudden, as when a
new center joins a multi-center trial. The nature of change in the patient
population could be complex. Because patients often enroll in clinical trials
when standard treatments have been ineffective, changes in the standard of
care cause changes in the population enrolling in clinical trials: patients are
implicitly selected by resistance to different treatments. Often population
characteristics change so slowly that they are not of immediate concern.
However, it is possible for a population to drift significantly during the course
of a multi-year clinical trial. This paper addresses the effect of significant
population drift on adaptively randomized clinical trials.
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We limit the term “population drift” to unanticipated changes in the
characteristics of patients enrolling in a given clinical trial that impact the
efficacy of the treatments under consideration. The causes of these changes
are necessarily unknown; otherwise they would be accounted for in the sta-
tistical design. For example, if one suspected that the proportion of patients
in each disease stage would vary during the trial, and that staging would
impact the relative efficacy of the treatments being tested, one could restrict
eligibility by disease stage or create a statistical model which incorporates
disease stage as a covariate.

Since we limit our attention to unanticipated population drift, we do
not consider attempts to directly model the nature of the drift. One may
anticipate that some sort of population drift is possible during a trial, but
it is unreasonable to assume that one could determine the form of this drift
in advance, anticipating the form of an unanticipated effect.

We may say that a treatment becomes more or less effective over time,
though strictly speaking the treatment does not change; only the population
to which the treatment is administered changes. However, since we are
assuming the cause of population drift is unknown, we are justified in using
phenomenological language and speaking of the treatment changing.

2 Population drift in randomized trials

Population drift is problematic for randomized trials, whether using equal
randomization (ER) or outcome-adaptive randomization (AR). The primary
concern is cross-over, changes in the effectiveness of treatments relative to
each other. For example, an early stopping rule may select the treatment
that performed better at the beginning of the trial, while another treatment
would have been selected had the trial continued longer.

If population drift is present but not recognized, a randomized trial will
select with high probability the treatment which was more effective during
the trial, not the treatment which will be more effective after the trial ends.

If population drift is recognized, difficult questions arise. Which treat-
ment should be selected for future patients? The treatment that appeared
to be more effective at the end of the trial? Would it be appropriate to
extrapolate population trends and speculate which treatment will be most
effective by the time this treatment is in common use? Would a regulatory
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agency approve a treatment based on anticipated changes to a population
due to an unknown cause? (Recall that we assume the cause of patient drift
is unknown, otherwise the cause would have been built into either the entry
criteria or the statistical model.) Should a post hoc analysis be done to try
to determine the cause of the drift? If the selection of the best treatment
depends on how one handles drift, the trial will likely be inconclusive and a
subsequent trial will be necessary to resolve the questions raised.

How should AR and ER designs be compared when there is substantial
population drift? When there is no population drift, one could examine
correct selection probability, as in [2]. However, comparing correct selection
probability is problematic when it is not clear what the correct selection
should be. Indeed, if substantial population drift is likely to result in an
inconclusive trial, as we have argued above, then selection probabilities are
moot. Instead we compare AR and ER trials on the basis of patient benefit.
The motivation for adaptive randomization is to treat patients more effec-
tively in a clinical trial [1]. But could an adaptive randomization design do
more harm than good if the population is changing? One could imagine an
AR design treating patients less effectively than an analogous ER design if
the former persists in assigning more patients to what was once the more
effective treatment after conditions have changed.

When there is no population drift, AR designs typically lead to more
patients being assigned to the more effective treatment. When there is
population drift, particularly cross-over, one can no longer speak of “the
most effective treatment” without reference to time, and so the comparison
must be based on the number of patients treated effectively. One design is
better than another if it assigns on average more patients to what was the
better treatment at the time the patient was treated.

We will present simulation studies to examine whether AR continues to
treat patients more effectively than ER under a variety of scenarios.

3 Simulation studies

All simulations in this section are based on a two-arm trial of 500 patients.
To simplify matters, we do not include an early stopping rule and we assume
patient outcomes are known immediately upon treatment. We assume pa-
tients arrive according to a Poisson process. Drift is specified as a function
of arrival time, not accrual number. For patients arriving at a time past the
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expected duration of the trial, response probabilities are held constant at
the value specified for the expected end of the trial.

In each scenario, we compare the number of patient responses on the AR
design and an ER design. We also compare the number of responses to an
AR design with constant probabilities of response on each arm given by the
average response probability over time.

Let θi be the probability of response on arm i where i is 1 or 2. We
assume each θi is distributed a priori as beta(2, 3) and assign each arm
with probability equal to the posterior probability that it is the better arm.
Specifically, the adaptive randomization process used here assigns Arm 1
with probability

p = P (θ1 > θ2 | data).

Each AR trial is simulated 10,000 times. Expected patient responses for
ER trials are calculated multiplying the average response probability over
time by the number of patients.

We begin by considering several scenarios in which response probabilities
change linearly over time. We then consider scenarios in which the response
probability on one arm is given by a step function.

3.1 Linear drift scenarios

We consider five scenarios with linearly varying probabilities of response. In
the “rising tide” scenario, the probability of response on Arm 1 begins at
0.3 and rises to 0.4 by the end of the trial while the probability of response
on Arm2 begins at 0.4 and rises to 0.5. In the “falling tide” scenario, the
drift on each arm is reversed.

In the “catch up” scenario, the probability of response on Arm 1 increases
from 0.3 to 0.5 while the probability of response on Arm 2 is constantly 0.5.
In the “fall behind” scenario, the drift on Arm 1 is reversed. For the “cross
over” scenario, the probability of response increases from 0.3 to 0.5 on Arm
1, but decreases from 0.5 to 0.3 on Arm 2.

The average number of patient responses for the linear drift scenarios
are given in the following table.
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Scenario Average AR Drift AR ER
Rising tide 216.4 216.9 200
Falling tide 216.4 215.6 200
Catch up 241.2 243.4 225
Fall behind 241.2 237.7 225
Cross over 199.9 202.5 200

In each scenario, the AR design treats more patients effectively than
does the ER design. Also, population drift has little effect on the AR results
compared to fixing the response probabilities at their average values.

3.2 Jump discontinuity scenarios

In this section the probability of response on Arm 1 begins at 0.3 and remains
constant until jumping to 0.5 and remaining constant for the remainder of
the trial. The probability of response on Arm 2 remains fixed at 0.4. We
vary the location of the discontinuity in increments of 5% of the expected
duration of the trial. As the location of discontinuity increases, Arm 1 has a
lower response rate for a longer amount of time and so the expected number
of patients treated effectively decreases.

As Figure 1 illustrates, AR treats more patients effectively than ER in
every scenario. The advantage of AR is greatest when the discontinuity
occurs either early or late in the trial and is at a minimum when the break
occurs around 40% through the trial. Also, the advantage of AR is not
symmetric about this minimum. Instead, the method does best, relative to
ER, when the break occurs late in the trial.

The table below gives the values plotted in Figure 1 but also includes
simulation results for AR with constant probability of response. Notice that
the AR results with and without drift are more similar to each other than
either is to ER. In other words, the choice of AR vs ER has a greater effect
than whether there is population drift.
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Figure 1: Comparing AR and ER with discontinuous drift
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Break location Average AR Drift AR ER
0.00 240.5 240.7 225.0
0.05 235.3 234.9 222.5
0.10 230.8 229.4 220.0
0.15 225.9 224.4 217.5
0.20 221.2 219.7 215.0
0.25 216.7 215.6 212.5
0.30 212.7 212.5 210.0
0.35 208.9 209.5 207.5
0.40 205.7 206.2 205.0
0.45 202.8 203.8 202.5
0.50 199.7 201.6 200.0
0.55 197.8 199.7 197.5
0.60 196.0 198.0 195.0
0.65 194.6 196.6 192.5
0.70 193.5 195.5 190.0
0.75 192.6 194.6 187.5
0.80 192.1 193.7 185.0
0.85 191.8 192.9 182.5
0.90 191.5 192.3 180.0
0.95 191.4 192.0 177.5
1.00 191.4 191.9 175.0

4 Discussion

Our simulation results also suggest that population drift has relatively little
effect on adaptive randomization, whether the drift is continuous or discon-
tinuous; replacing varying response probabilities with their average values
had little impact on the number of patients treated effectively.

In all scenarios examined here, the adaptive randomization design treated
more patients effectively than the corresponding equal randomization de-
sign. These results suggest that the advantage of adaptively randomized
trials treating patients more effectively is robust to population drift.
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