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Abstract

This report examines the operating characteristics of adaptively randomized trials
relative to equally randomized trials in regard to power and bias. We also examine
the number of patients in the trial assigned to the superior treatment. The effects
of prior selection, sample size, and patient prognostic factors are investigated for
both binary and time-to-event outcomes.
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Chapter 1

Introduction

In clinical trials, patients often are randomized between two or possibly more treat-
ments in order to obtain statistical estimates of the treatment differences. Using
standard randomization schemes, patients have an equal chance of receiving each
treatment; the information obtained during the trial is not used to alter the ran-
domization probabilities. By contrast, outcome-adaptive randomization uses in-
terim data to unbalance the randomization probabilities in favor of the treatment
or treatments having comparatively superior outcomes. This gives patients a higher
chance of receiving the treatment that, on average, appears to be superior. Bayesian
models are especially well-suited to such adaptive decision-making in clinical trials.

The goal of outcome-adaptive randomization is to obtain statistical estimates
of efficacy while assigning treatments in a more ethical manner. While this type of
randomization is clearly ethically attractive, it introduces various complications.

In this report we examine how the operating characteristics of adaptively ran-
domized trials compare to those of equally randomized trials. We consider the
effects of prior specification, sample size, and patient prognostic factors on operat-
ing characteristics. These issues are examined in the context of trials in which the
primary end point is either binary or time-to-event.

1.1 Binary data

The first model is rather simple and straight forward, but has many practical
applications. The primary outcome of interest is binary. Data of this type arise in
situations where the outcome that is measured has two values such as response/no
response to therapy, toxicity/no toxicity to treatment, and white blood count that
has/has not reached a specified level.

This model assumes that the outcome of patient i on treatment j, denoted Xi,j,
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has a Binomial(πj) distribution and that a priori πj is distributed as beta(αj, βj).

1.2 Time-to-event data

The primary outcome for this model is the time from treatment until a predefined
outcome event occurs. Often the event is death or relapse of disease. However, this
model can also be applied in other situations, including ones in which the event is
desirable. For this design the goal is to select the treatment that has the longest
(or shortest if the outcome is desirable) time-to-event (TTE).

This model assumes that the outcome Xi,j has an exponential distribution with
median parameter ηj. It is assumed that ηj will follow an inverse gamma distribu-
tion with shape parameter αj and scale parameter βj.
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Chapter 2

Adaptive randomization models

The process of designing a clinical trial using novel statistical methods may require
an iterative process of elicitation, simulation, and examination. The elicitation
phase may involve analyzing historical data or questioning an expert about his or
her beliefs concerning the trial. One must also gather other pertinent information
about the trial, such as maximum trial duration, number of treatments, and max-
imum sample size. The simulation and examination stages are the focus of this
report and will be discussed at length for both models. During the examination
phase one examines the operating characteristics (OCs) obtained during the simu-
lation phase, observing how the model would perform under various hypothetical
scenarios. If the design does not perform well, the process of elicitation, simulation,
and examination may be repeated as necessary, possibly changing the approach.

2.1 Common design parameters

There are design parameters common to both of the proposed models. These
parameters control how to adapt the randomization and when to stop a trial. The
trial-specific parameters include rate of accrual, total patient accrual or length
of accrual, and length of additional follow-up. Typically, these parameters are
determined by the nature of the trial. For example, a rare disease may have a slower
rate of accrual, which would influence the decision of maximum trial duration as
well as maximum accrual. Parameters that are important to the statistical aspect
of running the trial include: a tuning parameter, initiation of adapting, dropping
rule, stopping rule, and minimum criterion for selecting.

5



2.1.1 Accrual

Adaptive randomization is more sensitive to accrual rate than equal randomization
because the former depends on accruing information. If patients are accruing much
faster than information is accruing, the process of learning is compromised. To see
this, consider the extreme case of a line of patients waiting to be treated the day
the trial opens. All patients are treated before any patient observations have been
made, and the so-called adaptive trial had no opportunity to adapt to data.

Erratic accrual may also be a problem. Suppose a few patients have been treated
at a leisurely pace and then the long line of patients appears. The outcomes of
a small number of patients would effect the randomization probabilities for the
remainder of the trial with no chance for additional data to have any effect.

Of course such infinite accrual rates do not occur in practice. However, rapid
accrual can exhibit the same problems, albeit to a lesser extent.

2.1.2 Length of additional follow-up

Once patient accrual has terminated, if the outcome of interest is not immedi-
ately observed a substantial amount of information may be acquired by continuing
to follow patient status. Following patient status beyond the end of the accrual
phase of the trial allows the last patients enrolled to contribute information to
the knowledge obtained from the trial. This concept is particularly important in
time-to-event trials where the time measured is large.

2.1.3 Adaptation tuning parameter

In the proposed method of AR the randomization probabilities are based on the
posterior probability of each arm being the “best”. It is often of interest to use a
function of these posterior probabilities rather than the actual probabilities. This
is often accomplished by using a tuning parameter, λ, which controls the extent to
which the randomization probabilities respond to the data. For each j, 1 ≤ j ≤ J ,
let pj represent the posterior probability that arm j is the best. That is, if θj is
the random variable representing the probability of response on arm j, pj is the
probability that if one were to draw a sample from all the θ’s, the sample from
θj would be the largest. For more detail, see [7] and [9] for more detail on these
probabilities and their numerical calculation.

For λ ≥ 0, set probability of assigning arm j to

ρj =
pλ

j

pλ
1 + · · · + pλ

J

.
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Setting λ = 0 results no adapting, i.e., equal randomization. When 0 < λ < 1
the randomization is shrunk toward ER. If λ = 1, then no tuning is done. If λ > 1
the randomization probabilities are pushed away from ER. As λ → ∞, adaptive
randomization approaches a deterministic play-the-winner rule. The values of λ
that have been used to date in trials conducted at M. D. Anderson Cancer Center
are 0.5, 1.0, and 2.0.

Values of λ less than 1 result in designs that are less likely to favor one arm
earlier in the trial but that also assign fewer patients to the superior treatment. In
contrast, larger values of λ lead to designs that are more likely favor an arm earlier
in the trial, even when the treatments are equal, but that also assign more patients
to the superior treatment. The simulations in this report use λ = 1.

2.1.4 Initiation of adapting

If an adaptive randomization trial beings with an uninformative prior on the re-
sponse probabilities and unbalances the randomization probabilities immediately,
early outcomes may unduely influence the course of the trial. There are two so-
lutions to this problem: begin with a moderately informative prior, or require a
period of equal randomization before unbalancing.

2.1.5 Dropping rule

A dropping rule is a condition that must be met in order to suspend, or possibly
terminate, randomization to a particular arm. This type of rule is used to prevent a
patient from being randomized to a treatment that currently has a high probability
of being an inferior treatment. Formally, if

Pr(arm j is the best given data) < PL

then do not allow the current patient to be randomized to treatment j. In some
circumstances one may wish to terminate randomization to this arm permanently,
effectively removing the arm from the trial.

2.1.6 Stopping rule

An early stopping rule is a set of one or more conditions that is used to terminate
a trial before all of the patients have been enrolled. The stopping rules for this
application will be described in terms of posterior probabilities of each treatment
being the best treatment in the trial. Formally, if

Pr(arm j is the best given data) > PU
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then the trial will be terminated early and arm j selected as the best treatment in
the trial. That is, if it is very likely that one of the treatments is better than all of
the other treatments then the trial will be stopped.

2.1.7 Minimum criterion for selecting

Once patient accrual has terminated, one must decide whether adequate informa-
tion has been acquired to conclude that one of the treatments is significantly better
than all other treatments in the trial. That is, select a treatment at the end of the
trial if

Pr(arm j is the best given data) > PU final.

This criterion helps avoid selecting a treatment which is only marginally superior.

2.2 Model-specific design parameters

The technical details of each model are presented in the Appendix. This section
will describe the parameters specific to each model and their interpretation.

2.2.1 Binary model

Here we discuss the model used when the primary outcome of interest has only two
possible states. For example, we may be interested in whether a patient has had
response to therapy, whether experienced toxicity, or whether their white blood
count has reached a specified level. Typically, the time between treatment and ex-
amination is significant and is typically not 0. Because AR uses the outcome data
to unbalance the randomization probabilities, time between treatment and evalua-
tion should be short enough that few patients are accrued during the observation
interval.

Let J denote the number of arms in the trial, and for each j = 1, 2, . . . , J let
nj denote the number of patients on arm j. Let Xi,j be the indicator of response
for patient i on treatment j. This model assumes that Xi,j has a binomial distri-
bution with probability parameter πj. It is assumed that a priori the probability
parameters π1, π2, . . . , πJ follow independent beta distributions with parameters
αj, βj.

The beta distribution is a conjugate prior for the binomial likelihood. When
specifying the prior distribution one may refer to the formulas for mean and vari-
ance listed in equation 5.1 of the Appendix. One possibility for specifying the prior
is to set the mean of the prior equal to the historical response rate and choose a
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large variance if the estimate is based on little information. See [8] for software to
calculate distribution parameters for the beta given a mean and variance. Alter-
natively, one may specify the prior sample size, nH , and historical rate, πH . This
corresponds to parameters of α = πHnh and β = nH(1 − πH).

One may interpret α as the prior number of patients who had a response, and
β as the prior number of patients who did not have a response. Thus, α + β is
equivalent to the prior sample size. Figure 5.1 A is a plot of the beta distribution
for various parameters.

As an example, consider a case in which one has significant prior information.
Suppose the historical data includes 100 patients of which 20 responded. Using
the above, α = πHnh = 20 and β = nH(1 − πH) = 80, which corresponds to a
fairly informative prior. In a small trial, say less than 100 patients, the posterior
will be dominated by the prior. A common solution to this problem is to down-
weight the historical data, for example using a beta(2, 8) prior, corresponding to
using 10% of the data. For a plot of the distribution of this prior see figure 5.1 A.
Using this prior, suppose further that after enrolling 10 patients in the trial there
were 2 responses and 8 failures. The posterior would be beta(4, 16), a graph for
this as well as the posterior at 30 and 60 patients, all assuming the historical rate
of response, are provided in figure 5.1 B. Notice how the posterior becomes more
peaked, informative, as the data accrue. Figure 5.1 C provides the same example
but having specified the prior as beta(8, 2), this figure also assumes that 20% of the
patients enrolled respond. Figure 5.1 D is a plot of the posteriors corresponding to
the two priors.

2.2.2 Time-to-event model

This model is used when the primary outcome of interest is the time from treatment
to occurrence of a pre-specified outcome. Typically, the outcome is death or relapse
of disease. We assumed that the time-to-event, TTE, denoted Xi,j, of patient i on
treatment j, has an exponential distribution with median ηj. We assume that
a priori the median parameters η1, η2, . . . , ηJ follow independent inverse gamma
(ING) distributions with shape parameter αj and scale parameter βj. The data for
each patient consist of a pair of the form (t, I). Here t is the elapsed time between
initial treatment and either the event of interest or the patient’s last follow up.
The I is this patient’s indicator of the event. In other words, if the patient has
experienced the event, I = 1 and t represents the time from treatment to that
event. If the event has not occurred, I = 0 and t represents the elapsed time from
treatment until last observation. For more detail please refer to the Appendix.

The inverse gamma distribution has support (0, ∞) and is a conjugate prior
for the exponential likelihood. When specifying the parameters for the prior one
can use the formulas for mean and variance given in equation 5.2 in the Appendix.
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Usually, the mean of the prior is set equal to the expected median survival. A large
variance is used if median estimate is based on little information. The α parameter
may be interpreted as the prior number of patients who had experienced the event.
The β parameter may be interpreted as log 2 times the prior total-time-on-test.
The factor of log 2 comes from the fact for an exponential distribution, the mean
is log 2 times the median.

It is useful to note that given the survival percentage, p, at time t the median
TTE is −t log(2 − p).

For example, suppose that one has historical data for the standard treatment
where 110 deaths/relapses were observed with a median time-to-event of 7 months.
One could set α = 111 and β = 7 · 110 = 770. However, this prior would tend
to overwhelm the data in most trials and so it would be appropriate use a less
informative prior, especially in a smaller trial. Two possibilities would be to use
20% or 10% of the data in calibrating the prior. This would correspond to an
inverse gamma(23, 154) or an inverse gamma(12, 77) respectively. Another alter-
native would be to set the mean of the prior equal to the observed median, 7,
and select a large variance, say 100. (See [8] for software to calculate the distri-
bution parameters corresponding a specified mean and variance.) This leads to an
inverse gamma (2.49, 10.4) distribution. Each of the priors are plotted in figure
5.10. Suppose that the true median TTE were 10.5 and one wanted to know what
a typical posterior would look like after enrolling 60 patients in the trail. For two
of the above mentioned priors the posteriors have been plotted in figure 5.11. For
the most informative prior, inverse gamma(111, 770), a priori the 95% credible
interval is (5.8, 8.4) after enrolling 60 patients one could expect the 95% posterior
credible interval to be similar to (7.1, 9.6), which does not contain true median,
10.5. However, for the less informative inverse gamma(12, 77) prior, a priori the
95% credible interval is (3.9, 12.4). After enrolling 60 patients one could expect the
95% posterior credible interval to be similar to (7.9, 12.5), which does contain the
true median survival.

For more details concerning the TTE model, see [19].
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Chapter 3

Simulation study

For both models the OCs can only be obtained via simulation. Before discussing
the particulars of the simulations carried out for each model, it is useful to give
an overview of the concept of simulating a clinical trial. The use of computer
simulation in trial design is important because it informs person designing the trial
of what is likely to happen under various circumstances. It provides a way of
comparing the properties of different designs and eliminating poor designs before
ever enrolling a patient.

A simulation must adequately represent the entity being simulated. If the sim-
ulation of a trial does not reflect how the trial will actually be conducted then the
results may be misleading. As a basic example, consider the case of a binary out-
come. If there is a long time lag between treatment and evaluation, a simulation
which assumes outcomes are known immediately could be misleading.

It is vitally important to understand the difference between the statistical model
that is used to design and make decisions and the model that is used to generate
the data. The binary and TTE models described above are used to calculate the
randomization probabilities and to evaluate dropping and stopping rules. But the
model used to simulate the data may (and often should) be different than the
statical design model. The distinction is easily understood with a simple example.

Example

Suppose one wanted to conduct a trial where the primary outcome is binary
and there are two treatments under investigation. Assume that the probability
of response for a patient that receives treatment 1 is π1 and for one receiving
treatment 2 is π2. Suppose that based on historical data or expert opinion, a priori

π1 ∼ beta(2, 8) and assume that π2 follows the same distribution, independent of
π1. That is the statistical model. In order to simulate the trial one must now decide
how data should be simulated. This is playing a “what if” game. For example,
what if the patients treated on arm 1 have a 30% response and those on arm 2
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have a 60% response rate? Also, one could generate patient outcomes based on a
prognostic covariate, even though the statistical design model did not include such
a covariate.

The simulation study presented below is intended to address the following
points.

Q1) When comparing the power for AR to a standard method using
ER, how do the OCs compare and how much are they affected by the
amount of information used in specifying the prior for the standard
treatment?

Q2) Does AR assign more patients to the better treatment?

Q3) Are the estimates obtained biased by the use of AR, and if so, what
is the nature of that bias?

Sensitivity Analysis

After choosing the design and carefully selected the parameters to obtain good
OCs, it is often of interest to see how much the OCs will be changed if the underlying
assumptions of the model are not met. The three questions that most commonly
arise are as follows.

S1) What happens if the standard treatment has different results than
it did in the historical data?

S2) How much does the presence of a prognostic variable that is not
accounted for in statistical model effect the OCs?

S3) Can AR be used in small-sample trials?

3.1 Simulation study for binary model

3.1.1 Design details

Assume a trial has two treatment arms: standard, S, and experimental, E. Patients
arrive according to a Poisson process with an average of 5 patients per month. There
is one month between treatment and outcome evaluation. The first 25% of patients
were randomized with equal chance of receiving either treatment. For convenience,
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assume exactly half of these early patients would be assigned to each treatment.
Alternatively, assume a balanced randomization was used rather than purely equal
randomization so that the initial patients were evenly distributed.

Since the standard of care is included in the trial, and for ease of understanding,
no early stopping rules were enforced. Assume historical data were available on 100
patients and that the historical response rate was 30%.

For item Q1) the standard design that will be used for power comparisons is the
two-sample test of proportions which can easily be obtained using S-PLUS or other
statistical software. We use varying percentages of the data in order to calibrate the
prior for the standard treatment: 3% corresponding to a vague prior; 10%, a slightly
more informative prior; and 20%, the most informative under consideration, though
still not unreasonably informative. Thus, a priori πS ∼ beta(1.2, 2.8), beta(3, 7),
or beta(6, 14). Assuming there is little information on the experimental treatment,
we take πE ∼ beta(1.2, 2.8) a priori . This prior corresponds to a prior belief that,
on average, the two treatments have the same percent response. This is important
because ethics dictate that one must have equipoise in order to run a randomized
trial. We use the posterior mean as an estimate for the probability of response in
order to study bias.

Item S1) is easily addressed by allowing the response rate for the standard
treatment to be different than its historical mean. For this particular we let πS =
0.15 and πS = 0.45 in addition to the historical πS = 0.3.

For item S2), we simulated the data under the assumption that a prognostic
covariate, Z, was present that was not accounted for in the statistical model. This
was done by fixing the covariate effect and treating the standard arm as baseline.
The covariate effect is taken to be an indicator variable. For example, if a patient’s
performance status (PS) is good (Z = 0) then they have one probability of response,
and a lower probability of response if their PS is poor (Z = 1). We assume that
Pr(Z = 1) = 0.3. Specifically, for generating the data, for patient i who receives
treatment E, Ti = 1, the probability of response is logit−1(β0 + β1Zi + β2Ti).
Patients who receive S, Ti = 0, with a good PS have a response rate equal to the
historical rate of 30%. Therefore, we set β0 = −0.8472979 so that patients with a
good PS have a 30% response rate. To better understand the effect of a covariate,
we examine two covariate effect sizes. For the first, we set β1 = −0.8873032 so
that the patients who have a poor PS have a 15% response rate. For the second
covariate effect size, we set β1 = −0.5389965 so that the patients who have a poor
PS have a 20% response rate. The parameter β2 is easily calculated to give the
desired response rate for a patient with Z = 0 receiving treatment E.

In order to address S3) sample sizes of 120 and 60 are considered.

Each scenario was simulated with 5000 trials.
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3.1.2 Results

Figure 5.2 A is a plot of the power curves for each of the three priors as well as
that of ER for a trial with 120 patients. As one can see the power curves are
similar for each of the three priors and ER when πE ≤ πS but, are different when
πS > πE. Figure 5.2 B suggests one may expect a substantial proportion of the
patients to receive the superior treatment when using AR. Also, as the difference
in the treatments becomes smaller, the number of additional patients assigned to
the better treatment decreases. But, for an increase in the response rate from 0.3
to 0.45, an additional 27 patients on average would receive the superior treatment.
Figure 5.2 C shows the number of additional responses for adaptive randomization
compared to equal randomization as a function of the response probability. For the
same increase, from 0.3 to 0.45, four addition patients respond on average.

Bias

Figure 5.2 D is a plot of the bias for both the experimental treatment and the stan-
dard treatment. For this calculation the posterior mean was used as the estimate
for probability of response. There are two interesting aspects of this graph. First,
when πE = πS = 0.3 the bias is not 0 for either treatment. Second, the bias for the
standard treatment becomes negative when πE is close to πS.

Why is adaptive randomization negatively biased when πE and πS are equal?
It seems as though everything is symmetric, especially if the standard and exper-
imental arms have the same prior, and thus unbiased. But there is an important
asymmetry at the heart of adaptive randomization: better performing arms get
more patients. A given arm may perform poorly for the first few patients in one
trial but perform better in another trial. These random fluctuations do not entirely
cancel out each other.

When an arm performs better than it “should” early on, it receives more patients
and thus has more opportunity to bring the posterior mean closer to the mean of
the simulated data. But when an arm performs worse than it “should” early on,
it gets fewer patients and thus has less chance to change its posterior value. Thus
early over-estimates tend to regress to the mean more efficiently than early under-
estimates.

For unequal values of πE and πS, the bias is best explained by noting that the
posterior mean is a compromise between the observed data and the prior. Thus the
effectiveness of poorly performing treatments is over-estimated and the effectiveness
of well performing treatments is under-estimated.

However, the extent of the bias is not large and may be an acceptable price to pay
for the benefit of treating more patients on the more effective arms. Fortunately,
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the bias is smallest where the power is smallest, and largest where the power is
largest.

Response rates different from historical

To further understand how AR works another “what if” question comes to mind.
What if πS is not the same as the historical rate? To explore this question, set
πS = 0.15 and then to 0.45, leaving all other parameters unchanged. Figures 5.3
A - D and figure 5.4 A - D are graphs of the results. One interesting point is that
when πS = 0.15, ER has more power, as measured by a 2-sample test of proportions.
This is explained by recalling that πS is a compromise between the data and prior.
This suggests that the standard treatment has a higher response rate than what is
being seen in the trial. In fact, the beta(6, 14) prior has the lowest power due to
the amount of shrinkage. However, figures 5.3 B-C shows that more patients still
receive the better treatment and so you can expect to have more patients respond
using AR. The graphs of bias look just as one might expect. If πS = 0.15 the bias
is positive for πE < πS, increases as the two values become closer, and then levels
off. The bias does not return to near as zero as in the case when πS = 0.3 because
the estimate is a compromise between the data and prior.

In the case of πS = 0.45, larger than the historical rate, AR has more power,
since we have incorporated prior belief that would indicate that πS is actually less
than what is currently being observed in the trial.

Heterogeneity in patient population

As described in Section 3.1.1, heterogeneity in a patient population was simulated
by introducing a covariate in the simulation model but not accounting for it in the
statistical model. In order to obtain the power for the standard two-sample test, a
short script was written in S-PLUS to generate the patient population. Then using
the same two-sample test, but this time with a population that is heterogeneous, the
power was obtained by simulation. For this simulation only the less informative
prior, beta(1.2, 2.8) was used. The heterogeneity effects the power of both AR
and ER. See figures 5.5 A and B for plots. Introducing a covariate into the patient
population that is not accounted for in the statistical model compromises the power;
a larger sample size would be needed to maintain the same power. Figure 5.5 C is a
plot of the power curve for β1 = 0,−0.539 and −0.887, where β1 = 0 corresponds to
no covariate effect. These graphs show that for a covariate which occurs in 30% of
the patients and reduces the response rate from 30% to 15%, there is only a small
loss in terms of power. In addition, the same is also true for the number of patients
assigned to the superior arm. This could be explained by the larger sample size.
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Small sample size

The above simulation was useful in understanding how AR works and exploring its
use in a large trial. However, often the available resources may limit the sample
size. The simulation study above was repeated with only 60 patients to illustrate
the effects of smaller sample sizes. Figure 5.6 A is a plot of the power curve for
AR and ER using the same test as before. In contrast to the large sample, for
πE > πS the power for AR is better using any of the three priors. In addition, even
for this relatively small trial, one may expect to have approximately 5 more patient
responses if πS is 0.6. The estimates for πS and πE are slightly more biased due to
the smaller sample.

For the case of πS = 0.15 see figure 5.7. Very little power is lost even if πS is
different for the historical rate. However, in the case where πS = 0.45 the power
is much greater using AR rather than the standard ER design. In either case, the
estimates of πS and πR are slightly more biased than in the case with 120 patients.

3.2 Simulation study for time-to-event model

3.2.1 Design details

As in the binary model example, we consider a trial having two treatment arms:
standard, S, and experimental, E. Also as before, patients accrue according to a
Poisson process with mean of 5 patients per month, no early stopping rules were
enforced, and the first 25% of the patients were equally randomized.

The outcome in this section is survival time. We assumed that there were
historical data available on 110 patients and that the historical median TTE was
7 months. We use a variety of priors. Using 10% of the data, the corresponding
prior is ηS ∼ inverse gamma(12, 77). Retaining the historical mean and setting the
prior variance to 100 results in the vague prior ηS ∼ inverse gamma(2.49, 10.4).
Graphs of these prior can be seen in figure 5.10. Assuming there is little information
available on the experimental arm, we use the vague prior for the experimental arm.
Bias was calculated using the posterior mean as an estimate for the median TTE
for each treatment.

To address Q1) for comparison purposes to ER, a log-rank test for survival was
used.

Item S1) is investigated by allowing the median TTE to vary while using the
same prior. For simulation, median TTE was set to either 3.5 or 14 while using the
same priors and trial parameters as above. This simulation also allows investigation
of sensitivity to the prior specification.
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There are many ways to include a covariate in the simulation model to in-
vestigate S2. Here we assume each patient has a single covariate, Zi, and that
Pr(Zi = 1) = 0.30. The patient’s TTE is generated from an exponential distri-
bution with median = (1 + βZi)ηj for β > −1 where ηj is the median TTE for
treatment j when Zi = 0. When β < 0 a patient with Z = 1 is expected to have a
shorter TTE than a patient with Z = 0. For β = 0 there is no patient heterogene-
ity. When β > 0 a patient with Z = 1 is expected to have a longer TTE than a
patient with Z = 0. To better understand the effect of the covariate, we simulate
using two covariate effect sizes. That is, we set β equal to -0.5 and -0.75. These
values correspond to a patient with Z = 1 having a median TTE equal to 50% or
25%, respectively, of the median TTE for a patient with Z = 0.

Each of the above simulations was carried out with a total accrual of 120 and
60 in order to test sensitivity to sample size.

3.2.2 Results

Figure 5.12 A is a plot of the power curves using the log-rank test for AR using
each of the two priors and for ER. When ηE < ηS all three power curves are nearly
identical. However, when ηE > ηS the design using the prior incorporating 10%
of the data has greater power, while the design using the vague prior still have a
power nearly identical to that obtained using ER. However, graph B illustrates that
if patients receiving the experimental treatment have less than a 50% increase in
median survival, then you could expect to assign an additional 25 patients to the
superior treatment using AR.

Figure 5.12 C is a plot of the bias for both the experimental arm and standard
arm. As was seen in section 3.1.2, the bias becomes smaller in magnitude when
the treatments are equal. The bias for the standard treatment is never worse than
-3%. The discussion of bias from the binary model is also relevant here.

Standard median TTE different from historical

In order to investigate the effect of a different median TTE from the standard
treatment, ηS was set to either 3.5 or 14 and the simulations re-run with the same
design and prior specifications as above. The results for ηS = 3.5 are in figures 5.13
A - C and ηS = 14 are in figures 5.14 A - C.

Similar to the binary case, when ηS = 3.5, less than the historical value of η, the
prior incorporating more prior information has lower power. When ηE ∈ (3.5, 4.5)
more patients are assigned to the inferior arm. When ηS is slightly smaller than ηE

about 67% of the patients are assigned to the standard treatment and 33% to the
experimental. When ηE = 4.5 approximately 50% of the patients are randomized
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to each treatment. As ηE increases, the bias for ηS also increases. This is due
largely to that fact that when ηE is large the standard arm will only receive about
20 patients, which leads to a larger bias. The inverse gamma(12, 77) prior causes
more shrinkage than the less informative prior and thus leads to a more biased
estimate of the median TTE for the standard treatment.

When ηS = 14, larger than the historical value, the power for the more in-
formative prior is larger than both the less informative prior and ER, as can be
seen in figure 5.14 A. Figure 5.14 B is a plot of the additional patients receiving
the superior treatment. For the inverse gamma(22, 77) prior, when ηE ∈ (11, 14)
the number of additional patients assigned to the superior treatment, standard in
this case, is negative. But for the inverse gamma(2.49, 10.4) prior, the number of
additional patents receiving the superior treatment is never negative.

Heterogeneity in patient population

As described in Section 3.2.1, we simulated patient survival times from a hetero-
geneous population. We examined two covariate effect sizes. This report examines
power comparison for AR when the patient population is or is not heterogeneous.

The first covariate effect, β = −0.5, reduces the median survival by 50% for
patients with the covariate, see figures 5.15 A - C and the second covariate effect,
β = −.25,, reduces the median survival by 75% for patients with the covariate,
see figures 5.16 A - C. Plot A shows that the prior has little effect on the power
in either case. But of more interest is the amount of power lost by having a
heterogeneous population. Graph B is a plot of the loss of power, power for a
population with no covariate minus power for a population with a covariate. For
the inverse gamma(12,77) prior, the loss of power is always less than 0.15 for the
first covariate effect, β = −0.5, and 0.26 when using the second covariate effect,
β = −0.25. For the inverse gamma( 2.49, 10 ) prior the loss of power is less than
0.06, 0.13 for covariate effects 1 and 2 respectively. In terms of the additional
patients receiving the better treatment there is little difference for covariate effect
1, and only a moderate difference for covariate effect 2.

Small sample size

The resources needed to run a large 120 patient trial are not always available
and it is therefore sometimes necessary to run a trial with fewer patients. We
repeat our simulations for trial with 60 patients and examined the same ideas as
above. Figures 5.17 A - C are plots of the power, additional patients receiving the
superior treatment, and the bias for a smaller trial. In order to calibrate the design
parameters, the null case, ηS = ηE = 7.0, was simulated until a false-positive rate
of 5% was achieved. As one would expect, using a more informative prior gives
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higher power, figure 5.17 A. In addition, a more informative prior also leads to
more patients being assigned to the superior treatment. The bias is smaller for the
more informative prior.

However, figures 5.18 A - C for ηS = 3.5 and figures 5.19 A - C for, ηS = 14,
show that the choice of a more informative prior may not be the best way to go.
Using the inverse gamma(12, 77) prior leads to inferior power when ηS is less than
the historical value of η and superior power when ηS is greater than the historical
value. In either case, the use of the more informative prior has the possibility of
randomizing slightly more patients to the inferior treatment.

In a smaller trial where the patient population is heterogeneous there is po-
tential for significant loss in power when compared to the same design used in a
homogenous population. Figures 5.20 A - C and figures 5.21 A - C are graphs for
the simulations for two different covariate effects sizes. If a covariate reduces the
median TTE by 50% (β = −0.5) there is potential for a 0.2 reduction in power.
For the case when the covariate is more extreme and reduces the median TTE by
75% there is a possibility for a 0.3 reduction in power. In either case, using the
less informative prior one can still expect to assign more patients to the superior
treatment. However, with the more informative prior there is a small possibility to
assign a few (less than 5) more patients to the inferior arm.
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Chapter 4

Discussion

The main purpose of adaptive randomization is to provide a more ethical way of
randomizing patients in a clinical trial. The simulations above show that when the
assumptions of the model are met, AR can be expected to assign more patients
to the superior treatment. AR appears to have similar power to ER when using a
standard test for difference at the end of the trial. However, one concern with using
AR is the bias that is introduced when using the posterior mean as the estimate
for the parameter of interest. Even if the assumptions of the model are met and
the treatments are equal at the end of the trial the posterior mean tends to under-
estimate the probability of response, median time-to-outcome, and over estimate
the probability of treatment failure.

When the patient outcomes on the standard treatment are different than what
was observed in the historical data, incorporation of more data into the prior can
have adverse effects. When the standard treatment is less effective than it was in
the historical data the power is less than one could expect using ER. However, one
could still expect to assign more patients to the superior treatment. When the
standard treatment is more effective than it was historically, the power is generally
higher using AR than it is using ER. However, if the experimental arm is just
slightly worse than the standard and the standard treatment performs more poorly
than it had historically, the use of a more informative prior leads to the possibility
of assigning more patients to the inferior arm.

When a covariate is present that is not accounted for in the statistical model,
the OCs are mildly affected. The power decreases slightly in a larger trial (N = 120
patients) but more in a smaller trial (N = 60 patients). Even with the loss of power
AR is still expected to assign more patients to the superior treatment. While the
loss of power is not always substantial, it could be reported in cases where there is
a possibility of a covariate that is not being accounted for.
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Chapter 5

Appendix

For a trial with J treatment arms, let Xi,j denote the outcome of patient i on
treatment j.

5.1 Binary data model

Set Xi,j = 1 if the ith patient’s outcome is a “success” and Xi,j = 0 if the ith

patient’s outcome is a “failure”.

Let πj be the probability of “success” on treatment j = 1, 2, . . . , J.

X1,j , X2,j, . . . , Xnj ,j | πj ∼ i.i.d binomial(πj)

πj | αj, βj ∼ beta(αj, βj)

Suppressing the j index:

p(Xi = xi | π) = πxi (1 − π)1−xi

Let S+ =
∑n

i=1 Xi which is the number of “successes” and F + =
∑n

i=1(1−Xi),
which is the number of “failures” on treatment j.
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Likelihood:

L(XXX | π) =

n
∏

i=1

p(Xi = xi | π)

=
n

∏

i=1

πxi (1 − π)1−xi

= πS+

(1 − π)F+

Prior:

p(π | α, β) =
Γ(α + β)

Γ(α)Γ(β)
πα−1 (1 − π)β−1; α > 0, β > 0

E(π) =
α

α + β
; var(π) =

αβ

(α + β)2(α + β + 1)
(5.1)

Posterior:

p(π | XXX) ∝ πS+

(1 − π)F+

πα−1 (1 − π)β−1

∝ πα+S+
−1 (1 − π)β+F+

−1

Therefore
π | XXX ∼ beta(α + S+, β + F+).

5.2 Time-to-event data model

Let ηj be the median TTE of a patient given treatment j.

X1,j, X2,j, . . . , Xnj ,j | ηj ∼ i.i.d. exponential with median = ηj

ηj | αj, βj ∼ inverse gamma(αj, βj)
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Therefore, suppressing the j index

p(Xi = xi | η) =
log(2)

η
exp

{

−xi log(2)

η

}

Note: For this parameterization

S(Xi | η) = p(Xi > xi | η)

=

∫

∞

xi

log(2)

η
exp

{

−xi log(2)

η

}

= exp

{

−xi log(2)

η

}

Let δi = 1 if patient i has had the outcome and 0 otherwise, T + =
∑n

i=1 xi, E+ =
∑n

i=1 δi

Likelihood:

L(XXX | η) =

n
∏

i=1

{

p(Xi = xi | η)

}δi
{

S(Xi | η)

}1−δi

=

{

log(2)

η

}E+

exp

{

−
log(2) T +

η

}

Prior:

p(η | α, β) =
βα

Γ(α)
η−(α+1) exp(β/η)

E(η) =
β

α − 1
; var(η) =

β2

(α − 1)2(α − 2)
(5.2)

Posterior:

p(η | XXX) ∝ η−E+

exp

{

−
log(2) T +

η

}

∗ η−(α+1) exp(β/η)

∝ η−(α+1+E+) exp

{

−
β + log(2) T +

η

}

Therefore
η | XXX ∼ inverse gamma(α + E+, β + log(2) T +)
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Figure 5.1: Example for Beta Prior
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Figure 5.2: Simulation Results for Binary Model N = 120, πS = 0.30
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Figure 5.3: Simulation Results for Binary Model N = 120, πS = 0.15
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Figure 5.4: Simulation Results for Model 1 N = 120, πS = 0.45
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Figure 5.5: Effects of a covariate that is not accounted for in the statistical model,

N = 120. The data was simulated where a patient had a Pr( Resp. ) = logit−1(−0.847+

β1Z + β2Trt), where Pr( Z = 1 ) = 30%. This corresponds to a patient who receives S

having a 30%, 15% response for Z = 0, Z = 1, respectively if β1 = −0.887. and 30% and

20% if β1 = −0.539.
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Figure 5.6: Simulation Results for Binary Model N = 60, πS = 0.30
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Figure 5.7: Simulation Results for Binary Model N = 60, πS = 0.15
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Figure 5.8: Simulation Results for Binary Model N = 60, πS = 0.45
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Figure 5.9: Effects of a covariate that is not accounted for in the statistical model,

N = 60. The data was simulated where a patient had a Pr( Resp. ) = logit−1(−0.847 +

β1Z + β2Trt), where Pr( Z = 1 ) = 30%. This corresponds to a patient who receives S

having a 30%, 15% response for Z = 0, Z = 1, respectively if β1 = −0.887. and 30% and

20% if β1 = −0.539.
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Figure 5.10: Example Priors TTE Model
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Figure 5.11: Example posteriors for various priors where the true median TTE is
10.5.
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Figure 5.12: Simulation Results for TTE Model: N = 120, ηS = 7.0
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Figure 5.13: Simulation Results for TTE Model: N = 120, ηS = 3.5
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Figure 5.14: Simulation Results for TTE Model: N = 120, ηS = 14
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Figure 5.15: TTE Model: Effect of a covariate that was not accounted for in the statis-

tical model, N = 120. A patient’s TTE was simulated from an exponential(ηj(1 + βZ))

where β = −0.5 and Pr(Z = 1) = 0.30 and ηS = 7.
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Figure 5.16: TTE Model: Effect of a covariate that was not accounted for in the statis-

tical model, N = 120. A patient’s TTE was simulated from an Exponential(ηj(1 + βZ))

where β = −0.75 and Pr(Z = 1) = 0.30 and ηS = 7
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Figure 5.17: Simulation Results for TTE Model: N = 60, ηS = 7.0
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Figure 5.18: Simulation Results for TTE Model N = 60, ηS = 3.5
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Figure 5.19: Simulation Results for TTE Model: N = 60, ηS = 14
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Figure 5.20: TTE Model: Effect of a covariate that was not accounted for in the statis-

tical model, N = 60. A patient’s TTE was simulated from an exponential(ηj(1 + βZ))

where β = −0.5 and Pr(Z = 1) = 0.30 and ηS = 7.
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Figure 5.21: TTE Model: Effect of a covariate that was not accounted for in the statis-

tical model, N = 60. A patient’s TTE was simulated from an Exponential(ηj(1 + βZ))

where β = −0.75 and Pr(Z = 1) = 0.30 and ηS = 7
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