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Abstract

Bayesian statistics often requires eliciting prior probabilities from sub-
ject matter experts who are unfamiliar with statistics. While most people
an intuitive understanding of the mean of a probability distribution, fewer
people understand variance as well, particularly in the context of asym-
metric distributions. Prior beliefs may be more accurately captured by
asking experts for quantiles rather than for means and variances.

This note will explain how to solve for parameters so that common
distributions satisfy two quantile conditions. We present algorithms for
computing these parameters and point to corresponding software.

The distributions discussed are normal, log normal, Cauchy, Weibull,
gamma, and inverse gamma. The method given for the normal and
Cauchy distributions applies more generally to any location-scale family.

1 Problem statement

Let X be a random variable from a two-parameter family. Given probabilities
p1 and p2 we elicit values x1 and x2 such that

P (X < x1) = p1

and
P (X < x2) = p2.

For example, we may ask for the 10th and 90th percentiles. For consistency we
require

(x1 − x2)(p1 − p2) > 0.
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This is the only restriction. There is no mathematical requirement for p1 and
p2 to be widely separated, though in practice they usually will be.

2 Location-scale families

Suppose we want to find the mean and standard deviation of a normal distribu-
tion that has specified quantiles. The derivation below shows how to compute
the distribution parameters. The only property of the normal distribution we
use is that it is a location-scale family. The same derivation shows how to find
the location and scale of any location-scale distribution.

We want to find µ and σ such that a normal random variable with mean
(location) µ and standard deviation (scale) σ satisfies

P (X < x1) = p1

and
P (X < x2) = p2

where x1 < x2 and p1 < p2.

The random variable X has the same distribution as σZ + µ where Z is a
normal random variable with mean 0 and standard deviation 1. Let Φ be the
CDF of Z, i.e. Φ(x) = P (Z < x). Then the equations

P (X < xi) = pi

are equivalent to
P (σZ + µ < xi) = pi

and so

P

(
Z <

xi − µ
σ

)
= Φ

(
xi − µ
σ

)
= pi.

This yields linear equations for the parameters

Φ−1(pi)σ + µ = xi

with the solution
σ =

x2 − x1

Φ−1(p2)− Φ−1(p1)

and

µ =
x1Φ−1(p2)− x2Φ−1(p1)

Φ−1(p2)− Φ−1(p1)
.

A log-normal distribution can easily be determined by two quantiles by re-
ducing the problem to that of finding the parameters for a normal distribution.

2



If X ∼ log-normal(µ, σ), then Y = logX ∼ normal(µ, σ). To find µ and σ so
that P (X < xi) = pi, solve for parameters so that P (Y < log xi) = pi.

Note that the argument above could be used to find the location and scale
parameters for any location-scale distribution. For example, the procedure could
be used to find parameters of a Cauchy distribution. If Z is the distribution
family representative with location 0 and scale 1 and F (x) is its CDF, then the
scale parameter

σ =
x2 − x1

F−1(p2)− F−1(p1)

and the location parameter

µ =
x1F

−1(p2)− x2F
−1(p1)

F−1(p2)− F−1(p1)

guarantee that X = σZ + µ satisfies

F (x1) = p1

and
F (x2) = p2.

3 Weibull distribution

Next we consider the problem of determining the parameters of a Weibull dis-
tribution from two specified quantiles.

The Weibull distribution with shape γ and scale β has CDF

F (x; γ, β) = 1− exp
(
−
(
x

β

)γ)
.

The CDF can be inverted easily:

F−1(p; γ, β) = β(− log(1− p))1/γ .

If
F (x1; γ, β) = p1

then
F (x1/β; γ, 1) = p1.

Thus for every γ > 0

β = β(γ) =
x1

F−1(p1; γ, 1)
=

x1

(− log(1− p1))1/γ
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satisfies the first quantile equation F (x1; γ, β) = p1. Next we show how to select
γ to also satisfy the second quantile equation.

If F (xi; γ, β(γ)) = pi for i = 1, 2 then xi = F−1(pi; γ, 1) and

x2

x1
=
F−1(p2; γ, 1)
F−1(p1; γ, 1)

=
(

log(1− p2)
log(1− p1)

)1/γ

.

It follows that

γ =
log(− log(1− p2))− log(− log(1− p1))

log(x2)− log(x1)
.

4 Gamma distribution

We can determine the parameters for a gamma distribution in a manner similar
to that used for the Weibull distribution. However, the CDF and inverse CDF
of a gamma distribution do not have an elementary closed form and so the proof
is less direct.

Let F (x;α, β) be the CDF of a gamma distribution with shape α and scale
β. That is,

F (x;α, β) =
1

Γ(α)βα

∫ x

0

tα−1 exp(−t/β) dt.

We will show there is a unique solution to the equations

F (x1;α, β) = p1

and
F (x2;α, β) = p2

provided 0 < x1 < x2 and 0 < p1 < p2 < 1.

Note that the gamma is a scale family and so

F (x;α, β) = F (x/β;α, 1).

Thus for any α > 0,
β =

x1

F−1(p1;α, 1)

is the unique β satisfying
F (x1;α, β) = p1.

This says that set of parameters satisfying one quantile constraint is a curve
in the first quadrant. This curve implicitly defines β as a function of α. The
question now is whether the curve corresponding to two different constraints
must intersect.
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Assume x1 > 0 and 0 < p1 < p2 < 1 are given. We consider the range of
x2 values such that the two quantile constraints can be satisfied. We will show
that this range is (x1,∞).

If we can find α > 0 such that

β =
x1

F−1(p1;α, 1)
=

x2

F−1(p2;α, 1)

then (α, β) satisfies both constraints F (xi;α, β) = pi. For every α, we can
obtain equality above when

x2 = x1
F−1(p2;α, 1)
F−1(p2;α, 1)

.

The question now is reduced to determining the range of

F−1(p2;α, 1)
F−1(p1;α, 1)

.

First we show

lim
α→∞

F−1(p2;α, 1)
F−1(p1;α, 1)

= 1.

As α → ∞, the CDF of a gamma(α, 1) random variable approaches the CDF
of a normal(α,

√
α) random variable. Thus for large α

F−1(p2;α, 1)
F−1(p1;α, 1)

∼
√
αΦ−1(p2) + α√
αΦ−1(p1) + α

→ 1.

Next, we show

lim
α→0

F−1(p2;α, 1)
F−1(p1;α, 1)

=∞.

For small values of α,

1/Γ(α) ∼ α

and ∫ x

0

tα−1 exp(−t) dt ∼ xα

α
.

This says that as α→ 0,
F (x;α, 1) ∼ xα

and so
F−1(pi;α, 1) ∼ p1/α

i .

Therefore since p2 > p1 we have

F−1(p2;α, 1)
F−1(p1;α, 1)

∼
(
p2

p1

)1/α

→∞
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as α→ 0.

This says that for fixed 0 < p1 < p2 < 1 and 0 < x1 < x2, we can always
find a value of α such that

F−1(p2;α, 1)
F−1(p1;α, 1)

=
x2

x1
(1)

and hence we can satisfy both quantile conditions. To compute α we can solve
the equation (1), say using a bisection method.

To prove that that the solution produced above is unique it suffices show
that that

f(α) =
F−1(p2;α, 1)
F−1(p1;α, 1)

is monotone decreasing. We have shown that f(α) is monotone decreasing for
sufficiently small and sufficiently large values of α via asymptotic arguments. A
complete proof would show that f(α) is monotone for all α.

Note that we could solve for the parameters of an inverse gamma random
variable X by reducing the problem to finding parameters for the gamma ran-
dom variable 1/X. We have P (X < xi) = pi if and only if P (Y < 1/xi) = 1−pi.

5 Software

ParameterSolver is a Windows application that provides a convenient user inter-
face for determining distribution parameters to satisfy two quantile conditions.
The software also determines distribution parameters given a mean and variance.
The software is available from the M. D. Anderson Cancer Center Biostatistics
software download site.

http://biostatistics.mdanderson.org/SoftwareDownload/

This software does not implement the algorithms developed here. Instead it
uses optimization to find the parameters that minimize

(F (x1)− p1)2 + (F (x2)− p2)2 .

I did not realize at the time I worked on the software that the quantile constraints
could be satisfied exactly or that they could so easily be calculated directly
for several distributions. The fact that the software provided parameters that
exactly satisfy the quantile constraints prompted this more theoretical note.

The software will solve for beta distribution parameters satisfying two quan-
tile conditions. It appears that these conditions can be satisfied exactly, though
I have not proven this.
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