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The most common elementary illustration of Bayes’ theorem is medical test-
ing for a rare disease. The example is almost a cliché in probability and statistics
books. And yet in my opinion, it’s usually presented too quickly and too ab-
stractly. Here I’m going to risk erring on the side of going too slowly and being
too concrete. I’ll work out an example with numbers and no equations before
presenting Bayes theorem. Then I’ll include a few graphs.

Suppose there are 1,000,000 people in a given population, and 1,000 of these
people carry a certain genetic mutation. And suppose there’s a test for this
mutation that is 95% accurate in the sense that 95% of those who have the
mutation will test positive, and only 5% of those who do not have the mutation
will test positive. In other words, the false positive rate and the false negative
rate are both 0.05. (In general these rates will differ, but they’re the same in
this example for simplicity.)

You take a test for the mutation and the result is positive. What is the
probability that you really have the mutation? Your first response may be 95%,
but that’s the probability that the test will be positive given that you have
the mutation. You want to know the opposite, the probability of having the
mutation given that the test is positive. In symbols, we know

Pr(positive |mutation) = 0.95

but we want to know
Pr(mutation |positive).

Here’s a quick example to show that Pr(A |B) and Pr(B |A) may be very
different. Suppose you pick an American citizen at random and want to know
the probability that this person is a former U.S. president. To date, all U.S. pres-
idents have been male, but the vast majority of males have not been president.
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So
Pr(male | former president) = 1

but
Pr(former president |male) ≈ 0.

Back to our mutation test. Suppose all 1,000,000 people were tested for the
mutation. How many people would test positive? Ninety-five percent of the
1,000 who have the mutation and five percent of the 999,000 who do not, for a
total of 0.95×1,000 + 0.05×999,000 = 50,900. How many of those who tested
positive had the mutation? 950. If you test positive, it is far more likely that
you’re one of the 49,950 who tested positive but did not have the mutation than
that you were one of the 950 who had the mutation and tested positive. In other
words, a person with a positive results is more likely to be among the 49,950
false positives than the 950 true positives.

The probability that you have the mutation given that you tested positive
is 950/(950 + 49,950) or about 2%. So in this example

Pr(positive |mutation) = 0.95

but
Pr(mutation |positive) = 0.0187

Knowing that you tested positive increased your probability of having the
mutation from 0.001 to 0.0187, but not all the way to 0.95.

Let’s go back and look at what would happen if 40% of the original popu-
lation had the mutation. If everyone were tested, 95% of the 400,000 who have
the mutation would test positive, and 5% of the 600,000 who do not have the
mutation would test positive. Your probability of having the mutation given
that you tested positive would be 380,000 / (380,000 + 30,000) or about 93%.
Since the mutation is common, the number of false positives (30,000) is fairly
small compared to the number of true positives (380,000), and so a positive is
likely to be a true positive.

Notice that in both examples, a positive test result increases your probability
of having the mutation, no matter how common the mutation is. But the size
of the increase depends greatly on the prevalence of the mutation. When the
mutation was rare (0.1%), the relative increase in the probability of having the
mutation due to a positive test result was large (0.0187/0.001 = 18.7), but the
absolute increase in the probability was small (0.0187 − 0.001 = 0.0177). When
the mutation rate was large (40%), the relative increase in the probability of

2



mutation was fairly small (0.93/0.40 = 2.325) but the absolute increase was
large (0.93 − 0.40 = 0.53).

Now we break out Bayes’ theorem. In it’s simplest form, Bayes theorem says

Pr(H |E) =
Pr(E |H) Pr(H)

Pr(E)
=

Pr(E |H) Pr(H)
Pr(E |H) Pr(H) + Pr(E | ¬H) Pr(¬H)

.

Bayes’ theorem is true for any events E and H but E suggests “evidence” and H

suggests “hypothesis.” (Bayes’ theorem is much easier to prove than to under-
stand. To prove the theorem, just apply the definition of conditional probability
and simplify.) In our application, we start with Pr(E |H), the probability of the
evidence (the test result) given the hypothesis (presence of the mutation), and
we use Bayes’ theorem to compute Pr(H |E), the probability of the mutation
given the test result.

In our application, the numerator in Bayes’ theorem is the sensitivity of the
test (ratio of positive test results to total number of people with the mutation)
multiplied by the prevalence (the proportion of the total population with the
mutation). The denominator is the probability of a positive test result.

When the prevalence of the mutation is 0.001, Bayes’ theorem tells us the
probability of having the mutation given a positive test result is

0.95× 0.001
0.95× 0.001 + 0.05× 0.999

= 0.0187.

When the prevalence of the mutation is 0.40, the probability of having the
mutation given a positive test result is

0.95× 0.4
0.95× 0.4 + 0.05× 0.6

= 0.93.

Next we include a graph to show how the probability of mutation given a
positive test varies as a function of prevalence. The horizontal line at 0.95, the
probability of a positive test given the mutation, is added for reference. Note
that for prevalence less than 0.526,

Pr(mutation |positive) < Pr(positive |mutation)

but for larger values of prevalence the opposite is true.
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Pr(mutation | positive)
Pr(positive | mutation)

Now let’s look more closely at the relative and absolute changes in the proba-
bility of having the mutation as the prevalence changes. Let p be the prevalence
of the mutation, the unconditional probability that someone has the mutation.
Bayes theorem says that the probability of having the mutation given a positive
test result is 95p/(90p + 5). So the relative increase in the probability of having
the mutation due to a positive test result is R(p) = 95/(90p + 5). The absolute
change is A(p) = 95p/(90p + 5)− p. The following graphs plot R(p) and A(p).
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As our particular examples with p = 0.001 and p = 0.40 suggest, the relative
increase in probability of mutation due to a positive test result decreases as
prevalence increases. The absolute increase is small when the prevalence is
small (or very large) but increases for moderate levels of prevalence, reaching a
maximum around p = 0.187.
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