
University of Texas, MD Anderson Cancer
Center

UT MD Anderson Cancer Center Department of Biostatistics
Working Paper Series

Year Paper

Random inequalities between survival and
uniform distributions

John D. Cook∗

∗M. D. Anderson Cancer Center, cook@mdanderson.org
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/mdandersonbiostat/paper71

Copyright c©2011 by the author.

Random inequalities between survival and
uniform distributions

John D. Cook

Abstract

This note will look at ways of computing P(X>Y)where X is a distribution mod-
eling survival (gamma, inverse gamma, Weibull, log-normal) and Y has a uniform
distribution. Each of these can be computer in closed form in terms of common
statistical functions. We begin with analytical calculations and then include soft-
ware implementations in R to make some of the details more explicit. Finally, we
give a suggestion for using simulation to compute random inequalities that cannot
be computed in closed form.

Random inequalities between survival and

uniform distributions

John Cook

September 14, 2011

Abstract

This note will look at ways of computing

P (X > Y)

where X is a distribution modeling survival (gamma, inverse gamma,
Weibull, log-normal) and Y has a uniform distribution. Each of these can
be computed in closed form in terms of common statistical functions. We
begin with analytical calculations and then include software implemen-
tations in R to make some of the details more explicit. Finally, we give
a suggestion for using simulation to compute random inequalities that
cannot be computed in closed form.

1 Analytical results

For any distributions on independent random variables X and Y ,

P (X > Y) =

∫ ∞
−∞

fX(x)FY (x) dx.

Here we use fW and FW for the PDF and CDF functions of W respectively.
For more information on such inequalities, see [1].

Assume Y is uniformly distributed on [a, b] with 0 ≤ a < b <∞. Then

FY (x) =

 0 if x < a
(x− a)/(b− a) if a ≤ x ≤ b
1 if x > b

and it follows that∫ ∞
−∞

fX(x)FY (x) dx =

∫ b

a

x− a
b− a

fX(x) dx+

∫ ∞
b

fX(x) dx

=
1

b− a

∫ b

a

x fX(x) dx− a

b− a
(FX(b)− FX(a)) + 1− FX(b)

=
1

b− a

∫ b

a

x fX(x) dx+ 1− 1

b− a
(b FX(b)− aFX(a))

1

Hosted by The Berkeley Electronic Press

Assuming software for evaluating FX is available, the problem of computing
P (X > Y) reduces to the problem of computing∫ b

a

x fX(x) dx

2 X ∼ gamma

Assume X has a gamma distribution with shape parameter α. Without loss of
generality, we may assume X has scale parameter 1. Otherwise if X had scale
β, one could compute

P (X > Y) = P (X/β > Y/β)

where Y/β is uniform on [a/β, y/β].
Now

fX(x) =
1

Γ(α)
xα−1 exp(−x)

and ∫ b

a

x fX(x) dx =
Γ(α+ 1)

Γ(α)

1

Γ(α+ 1)

∫ b

a

xα+1−1 exp(−x) dx

= α (FW (b)− FW (a))

where W is a gamma random variable with shape α+ 1.

3 X ∼ inverse gamma

Now assume X has an inverse gamma distribution with shape α. As before, we
can assume without loss of generality that the shape parameter is 1.

Now

fX(x) =
1

Γ(α)
x−α−1 exp(−1/x) dx

and ∫ b

a

x fX(x) dx =
1

Γ(α)

∫ b

a

x−α exp(−1/x) dx

=
1

Γ(α)

∫ 1/a

1/b

uα−2 exp(−u) du

=
Γ(α− 1)

Γ(α)

∫ 1/a

1/b

1

Γ(α− 1)
uα−1−1 exp(−u) du

=
1

α− 1
(FW (1/a)− FW (1/b))

where W is a gamma random variable with shape α− 1.

2

http://biostats.bepress.com/mdandersonbiostat/paper71

4 X ∼ Weibull

Now assume X has a Weibull distribution. As with the case of the gamma and
inverse distributions, we can assume without loss of generality that X has scale
1.

Now
fX(x) = βxβ−1 exp(−xβ)

and ∫ b

a

x fX(x) dx = β

∫ b

a

xβ exp(−xβ) dx

=

∫ bβ

aβ
u exp(−u)u

1
β−1 du

= Γ(1 + 1/β)

∫ bβ

aβ

1

Γ(1 + 1/β)
u1/β exp(−u) du

= Γ(1 + 1/β)
(
FW (bβ)− FW (aβ)

)
where W is a gamma random variable with shape 1 + 1/β.

5 X ∼ log-normal

Assume X has a log-normal distribution. Then

fX(x) =
1√
2πσ

1

x
exp

(
−(log x− µ)2/2σ2

)
and ∫ b

a

x fX(x) dx =
1√
2πσ

∫ b

a

exp
(
−(log x− µ)2/2σ2

)
dx

=
1√
2πσ

∫ log b

log a

exp(−(u− µ)2/2σ2) exp(u) du

Now

u− (u− µ)2

2σ2
= − (u− (µ+ σ2))2

2σ2
+ µ+

σ2

2

and so the integral above becomes

exp(µ+ σ2/2)
1√
2πσ

∫ log b

log a

exp

(
− (u− (µ+ σ2))2

2σ2

)
du

which equals

exp(µ+ σ2/2)

(
Φ

(
log b− µ− σ2

σ

)
− Φ

(
log a− µ− σ2

σ

))
.

3

Hosted by The Berkeley Electronic Press

6 R implementation

The following R functions compute the random inequalities described in the pre-
vious section. Note that they properly avoid taking the logarithm or reciprocal
of zero.

gamma.ineq <- function(shape, scale, a, b)

{

a <- a/scale

b <- b/scale

ineq <- 1 - (b*pgamma(b, shape) - a*pgamma(a, shape)) / (b - a)

ineq <- ineq + shape*(pgamma(b, shape+1) - pgamma(a, shape+1))/(b - a)

return(ineq)

}

inverse.gamma.ineq <- function(shape, scale, a, b)

{

a <- a/scale

b <- b/scale

If X ~ IG(shape) then 1/X ~ gamma(shape)

P(X < c) = P(1/X > 1/c)

cdf <- function(x) { return(pgamma(1/x, shape, lower.tail = FALSE)) }

ineq <- 1 - (b*cdf(b) - a*cdf(a))/(b - a)

upper <- ifelse(a > 0, pgamma(1/a, shape-1), 1)

ineq <- ineq + (upper - pgamma(1/b, shape-1)) / ((shape-1)*(b-a))

return(ineq)

}

weibull.ineq <- function(shape, scale, a, b)

{

a <- a/scale

b <- b/scale

ineq <- 1 - (b*pweibull(b, shape) - a*pweibull(a, shape))/(b - a)

arg <- 1 + 1/shape

ineq <- ineq + gamma(arg)*(pgamma(b^shape, arg) - pgamma(a^shape, arg))/(b - a)

return(ineq)

}

log.normal.ineq <- function(mu, sigma, a, b)

{

ineq <- 1 - (b*plnorm(b, mu, sigma) - a*plnorm(a, mu, sigma))/(b - a)

4

http://biostats.bepress.com/mdandersonbiostat/paper71

phi <- function(x) { return(pnorm((log(x) - mu - sigma^2)/sigma)) }

lower <- ifelse(a > 0, phi(a), 0)

ineq <- ineq + exp(mu + sigma^2/2)*(phi(b) - lower)/(b-a)

return(ineq)

}

These functions were tested by comparing their results to the corresponding
simulation results.

7 Simulation

Let X and Y be any independent random variables. Let B be the Bernoulli(p)
random variable that is 1 if X > Y and zero otherwise. We wish to estimate
p by repeatedly sampling from the distributions of X and Y . If we knew p, we
could determine the number of samples necessary to meet a specified accuracy.
The standard error in estimating p from n samples is

√
p(1− p)/n and so if we

an approximately 0.95 probability of estimating p with relative error less than
ε, we need to solve √

p(1− p)/n
p

=
ε

2

for n. This says

n =
4(1− p)
pε2

.

One could first estimate p from a small sample and use p̂ from that sample
to estimate the number of further samples needed to meet the accuracy goal.
The following R code will carry out this procedure given functions that generate
random samples from X and Y .

sample.ineq <- function(xrng, yrng, epsilon)

{

sample.size1 <- 1000

max.sample.size <- 1000000

x <- xrng(sample.size1)

y <- yrng(sample.size1)

count1 <- sum(x > y)

p.hat1 <- count1 / sample.size1

n <- 4*(1 - p.hat1)/(p.hat1*epsilon^2)

if (n < sample.size1) return(p.hat1)

sample.size2 = min(n, max.sample.size)

5

Hosted by The Berkeley Electronic Press

x <- xrng(sample.size2)

y <- yrng(sample.size2)

count2 <- sum(x > y)

count2 / sample.size2 should be accurate enough (with prob 0.95)

but we might as well take advantage of the first sample.

return((count1 + count2)/(sample.size1 + sample.size2))

}

The following examples use sample.ineq to test the functions in the previous
section.

test.helper <- function(a, b, integration, xrng)

{

yrng <- function(n) {return(runif(n, a, b))}

simulation <- sample.ineq(xrng, yrng, 0.001)

cat("By integration: ", integration, "\n")

cat("By simulation: ", simulation, "\n\n")

}

cat("Testing P(X > Y) where X ~ gamma(3, 10) and Y ~ unif(15, 45)\n")

integration <- gamma.ineq(3, 10, 15, 45)

xrng <- function(n) {return(rgamma(n, 3, scale=10))}

test.helper(15, 45, integration, xrng)

cat("Testing P(X > Y) where X ~ inverse gamma(3, 1) and Y ~ unif(0.5, 0.8)\n")

integration <- inverse.gamma.ineq(3, 1, 0.5, 0.8)

xrng <- function(n) { return(1/rgamma(n, shape = 3)) }

test.helper(0.5, 0.8, integration, xrng)

cat("Testing P(X > Y) where X ~ Weibull(4, 1) and Y ~ unif(0.8, 1.2)\n")

integration <- weibull.ineq(4, 1, 0.8, 1.2)

xrng <- function(n) { return(rweibull(n, 4)) }

test.helper(0.8, 1.2, integration, xrng)

cat("Testing P(X > Y) where X ~ log normal(3, 2) and Y ~ unif(0, 8)\n")

integration <- log.normal.ineq(3, 2, 0, 8)

xrng <- function(n) { return(rlnorm(n, 3, 2)) }

test.helper(0, 8, integration, xrng)

These tests produced the following output.

Testing P(X > Y) where X ~ gamma(3, 10) and Y ~ unif(15, 45)

By integration: 0.4480053

By simulation: 0.4480663

6

http://biostats.bepress.com/mdandersonbiostat/paper71

Testing P(X > Y) where X ~ inverse gamma(3, 1) and Y ~ unif(0.5, 0.8)

By integration: 0.2095968

By simulation: 0.2097247

Testing P(X > Y) where X ~ Weibull(4, 1) and Y ~ unif(0.8, 1.2)

By integration: 0.3771884

By simulation: 0.3774764

Testing P(X > Y) where X ~ log normal(3, 2) and Y ~ unif(0, 8)

By integration: 0.8061174

By simulation: 0.8068019

8 Reference

[1] “Numerical Computation of Stochastic Inequality Probabilities” (August
2008). UT MD Anderson Cancer Center Department of Biostatistics Working
Paper Series. Working Paper 46. http://www.bepress.com/mdandersonbiostat/paper46.

7

Hosted by The Berkeley Electronic Press

