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Random inequalities between survival and
uniform distributions

John D. Cook

Abstract

This note will look at ways of computing P(X>Y)where X is a distribution mod-
eling survival (gamma, inverse gamma, Weibull, log-normal) and Y has a uniform
distribution. Each of these can be computer in closed form in terms of common
statistical functions. We begin with analytical calculations and then include soft-
ware implementations in R to make some of the details more explicit. Finally, we
give a suggestion for using simulation to compute random inequalities that cannot
be computed in closed form.
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Abstract

This note will look at ways of computing

P (X > Y )

where X is a distribution modeling survival (gamma, inverse gamma,
Weibull, log-normal) and Y has a uniform distribution. Each of these can
be computed in closed form in terms of common statistical functions. We
begin with analytical calculations and then include software implemen-
tations in R to make some of the details more explicit. Finally, we give
a suggestion for using simulation to compute random inequalities that
cannot be computed in closed form.

1 Analytical results

For any distributions on independent random variables X and Y ,

P (X > Y ) =

∫ ∞
−∞

fX(x)FY (x) dx.

Here we use fW and FW for the PDF and CDF functions of W respectively.
For more information on such inequalities, see [1].

Assume Y is uniformly distributed on [a, b] with 0 ≤ a < b <∞. Then

FY (x) =

 0 if x < a
(x− a)/(b− a) if a ≤ x ≤ b
1 if x > b

and it follows that∫ ∞
−∞

fX(x)FY (x) dx =

∫ b

a

x− a
b− a

fX(x) dx+

∫ ∞
b

fX(x) dx

=
1

b− a

∫ b

a

x fX(x) dx− a

b− a
(FX(b)− FX(a)) + 1− FX(b)

=
1

b− a

∫ b

a

x fX(x) dx+ 1− 1

b− a
(b FX(b)− aFX(a))
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Assuming software for evaluating FX is available, the problem of computing
P (X > Y ) reduces to the problem of computing∫ b

a

x fX(x) dx

2 X ∼ gamma

Assume X has a gamma distribution with shape parameter α. Without loss of
generality, we may assume X has scale parameter 1. Otherwise if X had scale
β, one could compute

P (X > Y ) = P (X/β > Y/β)

where Y/β is uniform on [a/β, y/β].
Now

fX(x) =
1

Γ(α)
xα−1 exp(−x)

and ∫ b

a

x fX(x) dx =
Γ(α+ 1)

Γ(α)

1

Γ(α+ 1)

∫ b

a

xα+1−1 exp(−x) dx

= α (FW (b)− FW (a))

where W is a gamma random variable with shape α+ 1.

3 X ∼ inverse gamma

Now assume X has an inverse gamma distribution with shape α. As before, we
can assume without loss of generality that the shape parameter is 1.

Now

fX(x) =
1

Γ(α)
x−α−1 exp(−1/x) dx

and ∫ b

a

x fX(x) dx =
1

Γ(α)

∫ b

a

x−α exp(−1/x) dx

=
1

Γ(α)

∫ 1/a

1/b

uα−2 exp(−u) du

=
Γ(α− 1)

Γ(α)

∫ 1/a

1/b

1

Γ(α− 1)
uα−1−1 exp(−u) du

=
1

α− 1
(FW (1/a)− FW (1/b))

where W is a gamma random variable with shape α− 1.
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4 X ∼ Weibull

Now assume X has a Weibull distribution. As with the case of the gamma and
inverse distributions, we can assume without loss of generality that X has scale
1.

Now
fX(x) = βxβ−1 exp(−xβ)

and ∫ b

a

x fX(x) dx = β

∫ b

a

xβ exp(−xβ) dx

=

∫ bβ

aβ
u exp(−u)u

1
β−1 du

= Γ(1 + 1/β)

∫ bβ

aβ

1

Γ(1 + 1/β)
u1/β exp(−u) du

= Γ(1 + 1/β)
(
FW (bβ)− FW (aβ)

)
where W is a gamma random variable with shape 1 + 1/β.

5 X ∼ log-normal

Assume X has a log-normal distribution. Then

fX(x) =
1√
2πσ

1

x
exp

(
−(log x− µ)2/2σ2

)
and ∫ b

a

x fX(x) dx =
1√
2πσ

∫ b

a

exp
(
−(log x− µ)2/2σ2

)
dx

=
1√
2πσ

∫ log b

log a

exp(−(u− µ)2/2σ2) exp(u) du

Now

u− (u− µ)2

2σ2
= − (u− (µ+ σ2))2

2σ2
+ µ+

σ2

2

and so the integral above becomes

exp(µ+ σ2/2)
1√
2πσ

∫ log b

log a

exp

(
− (u− (µ+ σ2))2

2σ2

)
du

which equals

exp(µ+ σ2/2)

(
Φ

(
log b− µ− σ2

σ

)
− Φ

(
log a− µ− σ2

σ

))
.
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6 R implementation

The following R functions compute the random inequalities described in the pre-
vious section. Note that they properly avoid taking the logarithm or reciprocal
of zero.

gamma.ineq <- function(shape, scale, a, b)

{

a <- a/scale

b <- b/scale

ineq <- 1 - (b*pgamma(b, shape) - a*pgamma(a, shape)) / (b - a)

ineq <- ineq + shape*(pgamma(b, shape+1) - pgamma(a, shape+1))/(b - a)

return( ineq )

}

inverse.gamma.ineq <- function(shape, scale, a, b)

{

a <- a/scale

b <- b/scale

# If X ~ IG(shape) then 1/X ~ gamma(shape)

# P(X < c) = P(1/X > 1/c)

cdf <- function(x) { return(pgamma(1/x, shape, lower.tail = FALSE)) }

ineq <- 1 - (b*cdf(b) - a*cdf(a))/(b - a)

upper <- ifelse(a > 0, pgamma(1/a, shape-1), 1)

ineq <- ineq + (upper - pgamma(1/b, shape-1)) / ((shape-1)*(b-a))

return( ineq )

}

weibull.ineq <- function(shape, scale, a, b)

{

a <- a/scale

b <- b/scale

ineq <- 1 - (b*pweibull(b, shape) - a*pweibull(a, shape))/(b - a)

arg <- 1 + 1/shape

ineq <- ineq + gamma(arg)*(pgamma(b^shape, arg) - pgamma(a^shape, arg))/(b - a)

return( ineq )

}

log.normal.ineq <- function(mu, sigma, a, b)

{

ineq <- 1 - (b*plnorm(b, mu, sigma) - a*plnorm(a, mu, sigma))/(b - a)
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phi <- function(x) { return( pnorm((log(x) - mu - sigma^2)/sigma) ) }

lower <- ifelse(a > 0, phi(a), 0)

ineq <- ineq + exp(mu + sigma^2/2)*(phi(b) - lower)/(b-a)

return( ineq )

}

These functions were tested by comparing their results to the corresponding
simulation results.

7 Simulation

Let X and Y be any independent random variables. Let B be the Bernoulli(p)
random variable that is 1 if X > Y and zero otherwise. We wish to estimate
p by repeatedly sampling from the distributions of X and Y . If we knew p, we
could determine the number of samples necessary to meet a specified accuracy.
The standard error in estimating p from n samples is

√
p(1− p)/n and so if we

an approximately 0.95 probability of estimating p with relative error less than
ε, we need to solve √

p(1− p)/n
p

=
ε

2

for n. This says

n =
4(1− p)
pε2

.

One could first estimate p from a small sample and use p̂ from that sample
to estimate the number of further samples needed to meet the accuracy goal.
The following R code will carry out this procedure given functions that generate
random samples from X and Y .

sample.ineq <- function(xrng, yrng, epsilon)

{

sample.size1 <- 1000

max.sample.size <- 1000000

x <- xrng(sample.size1)

y <- yrng(sample.size1)

count1 <- sum( x > y )

p.hat1 <- count1 / sample.size1

n <- 4*(1 - p.hat1)/(p.hat1*epsilon^2)

if (n < sample.size1) return(p.hat1)

sample.size2 = min(n, max.sample.size)
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x <- xrng(sample.size2)

y <- yrng(sample.size2)

count2 <- sum( x > y )

# count2 / sample.size2 should be accurate enough (with prob 0.95)

# but we might as well take advantage of the first sample.

return( (count1 + count2)/(sample.size1 + sample.size2) )

}

The following examples use sample.ineq to test the functions in the previous
section.

test.helper <- function(a, b, integration, xrng)

{

yrng <- function(n) {return( runif(n, a, b) )}

simulation <- sample.ineq(xrng, yrng, 0.001)

cat("By integration: ", integration, "\n")

cat("By simulation: ", simulation, "\n\n")

}

cat("Testing P(X > Y) where X ~ gamma(3, 10) and Y ~ unif(15, 45)\n")

integration <- gamma.ineq(3, 10, 15, 45)

xrng <- function(n) {return( rgamma(n, 3, scale=10) )}

test.helper(15, 45, integration, xrng)

cat("Testing P(X > Y) where X ~ inverse gamma(3, 1) and Y ~ unif(0.5, 0.8)\n")

integration <- inverse.gamma.ineq(3, 1, 0.5, 0.8)

xrng <- function(n) { return( 1/rgamma(n, shape = 3) ) }

test.helper(0.5, 0.8, integration, xrng)

cat("Testing P(X > Y) where X ~ Weibull(4, 1) and Y ~ unif(0.8, 1.2)\n")

integration <- weibull.ineq(4, 1, 0.8, 1.2)

xrng <- function(n) { return( rweibull(n, 4) ) }

test.helper(0.8, 1.2, integration, xrng)

cat("Testing P(X > Y) where X ~ log normal(3, 2) and Y ~ unif(0, 8)\n")

integration <- log.normal.ineq(3, 2, 0, 8)

xrng <- function(n) { return( rlnorm(n, 3, 2) ) }

test.helper(0, 8, integration, xrng)

These tests produced the following output.

Testing P(X > Y) where X ~ gamma(3, 10) and Y ~ unif(15, 45)

By integration: 0.4480053

By simulation: 0.4480663
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Testing P(X > Y) where X ~ inverse gamma(3, 1) and Y ~ unif(0.5, 0.8)

By integration: 0.2095968

By simulation: 0.2097247

Testing P(X > Y) where X ~ Weibull(4, 1) and Y ~ unif(0.8, 1.2)

By integration: 0.3771884

By simulation: 0.3774764

Testing P(X > Y) where X ~ log normal(3, 2) and Y ~ unif(0, 8)

By integration: 0.8061174

By simulation: 0.8068019
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