University of Texas, MD Anderson Cancer Center

UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series

<i>Year</i> 2011	Paper 71

Random inequalities between survival and uniform distributions

John D. Cook*

*M. D. Anderson Cancer Center, cook@mdanderson.org

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/mdandersonbiostat/paper71

Copyright ©2011 by the author.

Random inequalities between survival and uniform distributions

John D. Cook

Abstract

This note will look at ways of computing P(X>Y) where X is a distribution modeling survival (gamma, inverse gamma, Weibull, log-normal) and Y has a uniform distribution. Each of these can be computer in closed form in terms of common statistical functions. We begin with analytical calculations and then include software implementations in R to make some of the details more explicit. Finally, we give a suggestion for using simulation to compute random inequalities that cannot be computed in closed form.

Random inequalities between survival and uniform distributions

John Cook

September 14, 2011

Abstract

This note will look at ways of computing

P(X > Y)

where X is a distribution modeling survival (gamma, inverse gamma, Weibull, log-normal) and Y has a uniform distribution. Each of these can be computed in closed form in terms of common statistical functions. We begin with analytical calculations and then include software implementations in R to make some of the details more explicit. Finally, we give a suggestion for using simulation to compute random inequalities that cannot be computed in closed form.

1 Analytical results

For any distributions on independent random variables X and Y,

$$P(X > Y) = \int_{-\infty}^{\infty} f_X(x) F_Y(x) \, dx.$$

Here we use f_W and F_W for the PDF and CDF functions of W respectively. For more information on such inequalities, see [1].

Assume Y is uniformly distributed on [a, b] with $0 \le a < b < \infty$. Then

$$F_Y(x) = \begin{cases} 0 & \text{if } x < a \\ (x-a)/(b-a) & \text{if } a \le x \le b \\ 1 & \text{if } x > b \end{cases}$$

and it follows that

$$\int_{-\infty}^{\infty} f_X(x) F_Y(x) dx = \int_a^b \frac{x-a}{b-a} f_X(x) dx + \int_b^\infty f_X(x) dx$$

= $\frac{1}{b-a} \int_a^b x f_X(x) dx - \frac{a}{b-a} (F_X(b) - F_X(a)) + 1 - F_X(b)$
= $\frac{1}{b-a} \int_a^b x f_X(x) dx + 1 - \frac{1}{b-a} (b F_X(b) - a F_X(a))$

1

Collection of Biostatistics Research Archive Assuming software for evaluating F_X is available, the problem of computing P(X > Y) reduces to the problem of computing

$$\int_{a}^{b} x f_X(x) \, dx$$

2 $X \sim \text{gamma}$

Assume X has a gamma distribution with shape parameter α . Without loss of generality, we may assume X has scale parameter 1. Otherwise if X had scale β , one could compute

$$P(X > Y) = P(X/\beta > Y/\beta)$$

where Y/β is uniform on $[a/\beta, y/\beta]$. Now

$$f_X(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \exp(-x)$$

and

$$\int_{a}^{b} x f_X(x) dx = \frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} \frac{1}{\Gamma(\alpha+1)} \int_{a}^{b} x^{\alpha+1-1} \exp(-x) dx$$
$$= \alpha \left(F_W(b) - F_W(a)\right)$$

where W is a gamma random variable with shape $\alpha + 1$.

3 $X \sim$ inverse gamma

Now assume X has an inverse gamma distribution with shape α . As before, we can assume without loss of generality that the shape parameter is 1. Now

INU

$$f_X(x) = \frac{1}{\Gamma(\alpha)} x^{-\alpha - 1} \exp(-1/x) \, dx$$

and

$$\int_{a}^{b} x f_{X}(x) dx = \frac{1}{\Gamma(\alpha)} \int_{a}^{b} x^{-\alpha} \exp(-1/x) dx$$
$$= \frac{1}{\Gamma(\alpha)} \int_{1/b}^{1/a} u^{\alpha-2} \exp(-u) du$$
$$= \frac{\Gamma(\alpha-1)}{\Gamma(\alpha)} \int_{1/b}^{1/a} \frac{1}{\Gamma(\alpha-1)} u^{\alpha-1-1} \exp(-u) du$$
$$= \frac{1}{\alpha-1} \left(F_{W}(1/a) - F_{W}(1/b) \right)$$

 $\mathbf{2}$

where W is a gamma random variable with shape $\alpha - 1$.

COBRA A BEPRESS REPOSITORY Collection of Biostatistics Research Archive

4 $X \sim$ Weibull

Now assume X has a Weibull distribution. As with the case of the gamma and inverse distributions, we can assume without loss of generality that X has scale 1.

Now

$$f_X(x) = \beta x^{\beta - 1} \exp(-x^\beta)$$

and

$$\begin{split} \int_{a}^{b} x f_{X}(x) dx &= \beta \int_{a}^{b} x^{\beta} \exp(-x^{\beta}) dx \\ &= \int_{a^{\beta}}^{b^{\beta}} u \exp(-u) u^{\frac{1}{\beta}-1} du \\ &= \Gamma(1+1/\beta) \int_{a^{\beta}}^{b^{\beta}} \frac{1}{\Gamma(1+1/\beta)} u^{1/\beta} \exp(-u) du \\ &= \Gamma(1+1/\beta) \left(F_{W}(b^{\beta}) - F_{W}(a^{\beta}) \right) \end{split}$$

where W is a gamma random variable with shape $1 + 1/\beta$.

5 $X \sim \log$ -normal

Assume \boldsymbol{X} has a log-normal distribution. Then

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{x} \exp\left(-(\log x - \mu)^2 / 2\sigma^2\right)$$

and

$$\int_{a}^{b} x f_X(x) dx = \frac{1}{\sqrt{2\pi\sigma}} \int_{a}^{b} \exp\left(-(\log x - \mu)^2 / 2\sigma^2\right) dx$$
$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{\log a}^{\log b} \exp(-(u - \mu)^2 / 2\sigma^2) \exp(u) du$$

Now

$$u - \frac{(u-\mu)^2}{2\sigma^2} = -\frac{(u-(\mu+\sigma^2))^2}{2\sigma^2} + \mu + \frac{\sigma^2}{2}$$

and so the integral above becomes

$$\exp(\mu + \sigma^2/2) \frac{1}{\sqrt{2\pi\sigma}} \int_{\log a}^{\log b} \exp\left(-\frac{(u - (\mu + \sigma^2))^2}{2\sigma^2}\right) du$$

which equals

$$\exp(\mu + \sigma^2/2) \left(\Phi\left(\frac{\log b - \mu - \sigma^2}{\sigma}\right) - \Phi\left(\frac{\log a - \mu - \sigma^2}{\sigma}\right) \right).$$

3

Collection of Biostatistics Research Archive

6 R implementation

The following R functions compute the random inequalities described in the previous section. Note that they properly avoid taking the logarithm or reciprocal of zero.

```
gamma.ineq <- function(shape, scale, a, b)</pre>
ſ
    a <- a/scale
    b <- b/scale</pre>
    ineq <- 1 - (b*pgamma(b, shape) - a*pgamma(a, shape)) / (b - a)</pre>
    ineq <- ineq + shape*(pgamma(b, shape+1) - pgamma(a, shape+1))/(b - a)</pre>
    return( ineq )
}
inverse.gamma.ineq <- function(shape, scale, a, b)</pre>
{
    a <- a/scale
    b <- b/scale</pre>
    # If X ~ IG(shape) then 1/X ~ gamma(shape)
    \# P(X < c) = P(1/X > 1/c)
    cdf <- function(x) { return(pgamma(1/x, shape, lower.tail = FALSE)) }</pre>
    ineq <-1 - (b*cdf(b) - a*cdf(a))/(b - a)
    upper <- ifelse(a > 0, pgamma(1/a, shape-1), 1)
    ineq <- ineq + (upper - pgamma(1/b, shape-1)) / ((shape-1)*(b-a))</pre>
    return( ineq )
}
weibull.ineq <- function(shape, scale, a, b)</pre>
{
    a <- a/scale
    b <- b/scale</pre>
    ineq <- 1 - (b*pweibull(b, shape) - a*pweibull(a, shape))/(b - a)</pre>
    arg < -1 + 1/shape
    ineq <- ineq + gamma(arg)*(pgamma(b^shape, arg) - pgamma(a^shape, arg))/(b - a)</pre>
    return( ineq )
}
log.normal.ineq <- function(mu, sigma, a, b)</pre>
ſ
    ineq <- 1 - (b*plnorm(b, mu, sigma) - a*plnorm(a, mu, sigma))/(b - a)</pre>
                                   4
```

http://biostats.bepress.com/mdandersonbiostat/paper71

```
phi <- function(x) { return( pnorm((log(x) - mu - sigma^2)/sigma) ) }
lower <- ifelse(a > 0, phi(a), 0)
ineq <- ineq + exp(mu + sigma^2/2)*(phi(b) - lower)/(b-a)
return( ineq )
}</pre>
```

These functions were tested by comparing their results to the corresponding simulation results.

7 Simulation

Let X and Y be any independent random variables. Let B be the Bernoulli(p) random variable that is 1 if X > Y and zero otherwise. We wish to estimate p by repeatedly sampling from the distributions of X and Y. If we knew p, we could determine the number of samples necessary to meet a specified accuracy. The standard error in estimating p from n samples is $\sqrt{p(1-p)/n}$ and so if we an approximately 0.95 probability of estimating p with relative error less than ε , we need to solve

$$\frac{\sqrt{p(1-p)/n}}{p} = \frac{\varepsilon}{2}$$

for n. This says

$$n = \frac{4(1-p)}{p\varepsilon^2}$$

One could first estimate p from a small sample and use \hat{p} from that sample to estimate the number of further samples needed to meet the accuracy goal. The following R code will carry out this procedure given functions that generate random samples from X and Y.

```
sample.ineq <- function(xrng, yrng, epsilon)
{
    sample.size1 <- 1000
    max.sample.size2 <- 1000000
    x <- xrng(sample.size1)
    y <- yrng(sample.size1)
    count1 <- sum( x > y )
    p.hat1 <- count1 / sample.size1
    n <- 4*(1 - p.hat1)/(p.hat1*epsilon^2)
    if (n < sample.size1) return(p.hat1)
    sample.size2 = min(n, max.sample.size)
    5
</pre>
```

Collection of Biostatistics Research Archive

```
x <- xrng(sample.size2)
y <- yrng(sample.size2)
count2 <- sum( x > y )
# count2 / sample.size2 should be accurate enough (with prob 0.95)
# but we might as well take advantage of the first sample.
return( (count1 + count2)/(sample.size1 + sample.size2) )
}
```

The following examples use sample.ineq to test the functions in the previous section.

```
test.helper <- function(a, b, integration, xrng)</pre>
ſ
    yrng <- function(n) {return( runif(n, a, b) )}</pre>
    simulation <- sample.ineq(xrng, yrng, 0.001)</pre>
    cat("By integration: ", integration, "\n")
    cat("By simulation: ", simulation, "\n\n")
}
cat("Testing P(X > Y) where X \tilde{} gamma(3, 10) and Y \tilde{} unif(15, 45)\n")
integration <- gamma.ineq(3, 10, 15, 45)</pre>
xrng <- function(n) {return( rgamma(n, 3, scale=10) )}</pre>
test.helper(15, 45, integration, xrng)
cat("Testing P(X > Y) where X ~ inverse gamma(3, 1) and Y ~ unif(0.5, 0.8)\n")
integration <- inverse.gamma.ineq(3, 1, 0.5, 0.8)</pre>
xrng <- function(n) { return( 1/rgamma(n, shape = 3) ) }</pre>
test.helper(0.5, 0.8, integration, xrng)
cat("Testing P(X > Y) where X ~ Weibull(4, 1) and Y ~ unif(0.8, 1.2)\n")
integration <- weibull.ineq(4, 1, 0.8, 1.2)</pre>
xrng <- function(n) { return( rweibull(n, 4) ) }</pre>
test.helper(0.8, 1.2, integration, xrng)
cat("Testing P(X > Y) where X \sim log normal(3, 2) and Y \sim unif(0, 8)\n")
integration <- log.normal.ineq(3, 2, 0, 8)</pre>
xrng <- function(n) { return( rlnorm(n, 3, 2) ) }</pre>
test.helper(0, 8, integration, xrng)
   These tests produced the following output.
Testing P(X > Y) where X ~ gamma(3, 10) and Y ~ unif(15, 45)
By integration: 0.4480053
By simulation: 0.4480663
```

6

Collection of Biostatistics Research Archive

http://biostats.bepress.com/mdandersonbiostat/paper71

```
Testing P(X > Y) where X ~ inverse gamma(3, 1) and Y ~ unif(0.5, 0.8)
By integration: 0.2095968
By simulation: 0.2097247
Testing P(X > Y) where X ~ Weibull(4, 1) and Y ~ unif(0.8, 1.2)
By integration: 0.3771884
By simulation: 0.3774764
Testing P(X > Y) where X ~ log normal(3, 2) and Y ~ unif(0, 8)
By integration: 0.8061174
By simulation: 0.8068019
```

8 Reference

 "Numerical Computation of Stochastic Inequality Probabilities" (August 2008). UT MD Anderson Cancer Center Department of Biostatistics Working Paper Series. Working Paper 46. http://www.bepress.com/mdandersonbiostat/paper46.

