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Comparing Methods of Tuning Adaptively
Randomized Trials

John D. Cook

Abstract

The simplest Bayesian adaptive randomization scheme is to randomize patients
to a treatment with probability equal to the probability p that the treatment is bet-
ter. We examine three variations on adaptive randomization which are used to
compromise between this scheme and equal randomization. The first variation is
to apply a power transformation to p to obtain randomization probabilities. The
second is to clip p to live within specified lower and upper bounds. The third
is to begin the trial with a burn-in period of equal randomization. We illustrate
how each approach effects statistical power and the number of patients assigned
to each treatment. We conclude with recommendations for designing adaptively
randomized clinical trials.
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Abstract

The simplest Bayesian adaptive randomization scheme is to randomize

patients to a treatment with probability equal to the probability p that

the treatment is better. We examine three variations on adaptive ran-

domization which are used to compromise between this scheme and equal

randomization. The first variation is to apply a power transformation to

p to obtain randomization probabilities. The second is to clip p to live

within specified lower and upper bounds. The third is to begin the trial

with a burn-in period of equal randomization. We illustrate how each

approach effects statistical power and the number of patients assigned to

each treatment. We conclude with recommendations for designing adap-

tively randomized clinical trials.
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1 Introduction

Let A and B be two treatments in an adaptively randomized trial, and let θi be

the probability of response on arm i where i is A or B. The simplest Bayesian

adaptive randomization scheme is to assign treatment i with probability

p = P (θi > θj |data). (1)

We refer to this approach as simple adaptive randomization (SAR).

In [1] we explored the effect of the power transformation

f(p, λ) =
pλ

pλ + (1− p)λ

for a given λ ≥ 0. That is, rather than assigning treatment i with probability

p, we first calculate p and give treatment i with probability f(p, λ). We refer

to this approach as PT(λ). Note that f(p, 1) = p and so PT(1) = SAR. Also,

f(p, 0) = 1/2 for all 0 < p < 1 and so when λ = 0 the randomization scheme

reduces to equal randomization (ER), that is, PT(0) = ER. We show in [1]

that as we vary λ between 0 and 1 the operating characteristics of the adaptive

randomization scheme change continuously between those of ER and SAR.

Another approach to compromising between ER and SAR is to simply clip

the randomization probabilities by setting a minimum randomization probabil-

ity r ≤ 1/2. We refer to this approach as Clip(r). If p falls below r, treatment i

is assigned with probability r. By symmetry, this implies that if the probability

p rises above 1− r then the treatment is given with probability 1− r. Moderate

values of p, those between r and 1−r, are left unchanged. Explicitly, the Clip(r)

assigns treatment i with probability

g(p, r) = max (r, min(p, 1− r)) .
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Figure 1: Clipping transformation g(p, 0.2)

Figure 1 graphs the transformation g for r = 0.2. Note that Clip(1/2) = ER

and Clip(0) = SAR.

The final variation on adaptive randomization we consider is the use of a

burn-in period of equal randomization. Let N be the maximum accrual of a

trial in which the first n patients are randomized with probability 1/2 and the

remaining N − n are randomized to treatment i with probability p defined in

equation 1. We denote this design by Burn(n/N). Note that Burn(1) = ER

and Burn(0) = SAR.

The designs PT(t), Clip((1−t)/2), and Burn(1−t) each interpolate between

ER and SAR as t varies between 0 and 1. In the next section we will examine

the operating characteristics of each family of designs as a function of t.

The simulation results presented in this paper were computed using the

Adaptive Randomization software1 available at [2].

1Most of the simulations in this report may be carried out with version 3.2.2 of the Adaptive

Randomization software available at the time of writing. However, some simulations require

extensions that will be included in the next version of the software.
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2 Operating characteristics

To explore the operating characteristics of the three families of designs, we

simulated a two-arm trial with a maximum of 80 patients. We assume the

response probabilities θi are distributed a priori as beta(0.6, 1.4). We examine

three scenarios. In each we assume the true probability of response on arm 1 is

0.2. The probabilities of response on arm 2 are 0.3, 0.4, and 0.5. We simulated

each design 10,000 times for each value of t from 0 to 1 in increments of 0.1 and

present the average behavior.

We simulated with and without an early stopping rule. When we apply a

stopping rule, we stop early if at any point in the trial

P (θi > θj |data) > 0.95 (2)

in which case we select treatment i as the superior treatment. If we reach the

maximum number of patients without either arm satisfying the above inequality,

we declare the trial inconclusive.

We first present the results for the design without a stopping rule, accruing

the maximum enrollment 80 patients in each simulation, and then present the

results adding the stopping rule.

In each graph, t varies from 0 to 1 along the horizontal axis. The solid blue

lines are for PT(t), the finely dashed red lines correspond are for Burn(1 − t),

and the coarsely dashed black lines are for Clip((1− t)/2).

2.1 Simulation results without early stopping rule

Figure 2 shows the probability of concluding arm 2 is superior under Scenario 1

(θ2 = 0.3) as λ = t varies. Figures 3 and 4 show the corresponding probabilities

under Scenario 2 (θ2 = 0.4) and Scenario 3 (θ2 = 0.5) respectively.
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Figure 2: Scenario 1, no stopping rule, correct selection probability

Figure 3: Scenario 2, no stopping rule, correct selection probability

Figure 4: Scenario 3, no stopping rule, correct selection probability
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Figure 5: Scenario 1, no stopping rule, patients on superior arm

Note that the curve for PT(t) is generally on top. That is, the power trans-

formation design generally reaches the correct conclusion more often than the

corresponding burn-in or clipping design.

Note also that the curves for PT(t) and Burn(1−t) are essentially monotone

decreasing in Scenarios 2 and 3, apart from simulation noise, whereas the curves

for Clip((1− t)/2) has a pronounced local minimum. This suggests that a small

amount of clipping may result in less power than no clipping.

Figures 5, 6, and 7 show the average number of patients assigned to the

superior arm under Scenarios 1, 2, and 3 respectively.

Note that each power transformation design puts more patients on the su-

perior arm than corresponding burn-in or clipping design. The advantage of

the power transformation increases as the probability of response on arm 2 in-

creases. Note also that the curves for number of patients on the superior arm are

smoother than the corresponding curves for probability of selecting the superior

arm.

The following scatter plots, Figures 8-10, summarize the relationship be-
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Figure 6: Scenario 2, no stopping rule, patients on superior arm

Figure 7: Scenario 3, no stopping rule, patients on superior arm
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Figure 8: Scenario 1, no stopping rule, selection vs patients on superior arm

tween selection probability and number of patients on the superior arm for each

scenario. The blue circles represent the power transformation, red triangles

represent burn-in, and black crosses represent clipping.

2.2 Simulation results with early stopping rule

In this section we repeat the simulations of the previous section with the addition

of the stopping rule given in equation 2.

Figures 11, 12, and 13 show the probabilities of correctly concluding that

arm 2 is superior under Scenarios 1, 2, and 3 respectively.

The addition of the stopping rule leads to more jagged operating character-

istic curves. However, the power transformation designs generally continue to

select the superior arm more often than the burn-in or clipping designs.
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Figure 9: Scenario 2, no stopping rule, selection vs patients on superior arm

Figure 10: Scenario 3, no stopping rule, selection vs patients on superior arm
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Figure 11: Scenario 1, early stopping rule, correct selection probability

Figure 12: Scenario 2, early stopping rule, correct selection probability

Figure 13: Scenario 3, early stopping rule, correct selection probability
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Figure 14: Scenario 1, no stopping rule, patients on superior arm

Figure 15: Scenario 2, no stopping rule, patients on superior arm

Figures 14, 15, and 16 show the average number of patients assigned to the

superior arm under Scenarios 1, 2, and 3 respectively.

The curves representing the number of patients assigned to the superior

arm are quite different when a stopping rule is added. Without a stopping

rule, the power transformation approach consistently put the most patients on

the superior arm. Burn-in and clipping were close to each other, with burn-

in doing slightly but consistently better. But now using a stopping rule, the

clipping method places the most patients on the superior arm, followed by power
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Figure 16: Scenario 3, no stopping rule, patients on superior arm

transformation, and then by burn-in.

The following scatter plots, Figures 17 - 19, summarize the relationship be-

tween selection probability and number of patients on the superior arm. As

before, the blue circles represent the power transformation, red triangles repre-

sent burn-in, and black crosses represent clipping.

3 Discussion

Power transformation, burn-in, and clipping are three generalizations of the sim-

plest Bayesian adaptive randomization design. Each contains a parameter that

can be used to create designs whose operating characteristics are intermediate

between those of ER and SAR. In each method, the probability of correctly

selecting the better arm at the end of the trial increases as one gets closer to

ER. The expected number of patients treated on the superior arm increases as

one gets closer to SAR. One may use any one of these methods to design an

adaptively randomized trial with properties somewhere between those of ER

and SAR, according to one’s trade-off between statistical power and treating
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Figure 17: Scenario 1, no stopping rule, selection vs patients on superior arm

Figure 18: Scenario 2, no stopping rule, selection vs patients on superior arm
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Figure 19: Scenario 3, no stopping rule, selection vs patients on superior arm

patients in the trial most effectively.

The simulation results presented in this report suggest that of these three

approaches, the power transformation approach puts the most patients on the

superior arm for a given statistical power. Absent a stopping rule, the power

transformation clearly performs better. With the stopping rule examined here,

the power transformation and clipping appear to do roughly equally well, with

burn-in doing worse. The power transformation also has the advantage of being

more general; this report has only examined designs of the form PT(λ) with

λ ≤ 1 though designs with λ > 1 are possible. See [1] for an exploration of the

operating characteristics of PT(λ) designs over the range 0 ≤ λ ≤ ∞.

We would suggest one begin exploring clinical trial designs by simulating

a PT(0) and a PT(1) design. The PT(0) design will give the most statistical

14

http://biostats.bepress.com/mdandersonbiostat/paper32



power. The PT(1) design will give an idea of how many more patients can be

assigned to the superior arm, and at what loss in power, under given scenar-

ios. To assign even more patients to the superior arm than the PT(1) design,

consider PT(2). If one wants a combination of power and treatment imbalance

somewhere between PT(0) and PT(1), linear interpolation on λ will give an

initial guess at an acceptable value of λ. One may also wish to simulate hybrid

designs, for example, using a burn-in period with a PT(λ) design.
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