Random number generators for Julia
## return a uniform random sample from the interval (a, b) function rand_uniform(a, b) a + rand()*(b - a) end ## return a random sample from a normal (Gaussian) distribution function rand_normal(mean, stdev) if stdev <= 0.0 error("standard deviation must be positive") end u1 = rand() u2 = rand() r = sqrt( -2.0*log(u1) ) theta = 2.0*pi*u2 mean + stdev*r*sin(theta) end ## return a random sample from an exponential distribution function rand_exponential(mean) if mean <= 0.0 error("mean must be positive") end -mean*log(rand()) end ## return a random sample from a gamma distribution function rand_gamma(shape, scale) if shape <= 0.0 error("Shape parameter must be positive") end if scale <= 0.0 error("Scale parameter must be positive") end ## Implementation based on "A Simple Method for Generating Gamma Variables" ## by George Marsaglia and Wai Wan Tsang. ## ACM Transactions on Mathematical Software ## Vol 26, No 3, September 2000, pages 363-372. if shape >= 1.0 d = shape - 1.0/3.0 c = 1.0/sqrt(9.0*d) while true x = rand_normal(0, 1) v = 1.0 + c*x while v <= 0.0 x = rand_normal(0, 1) v = 1.0 + c*x end v = v*v*v u = rand() xsq = x*x if u < 1.0 -.0331*xsq*xsq || log(u) < 0.5*xsq + d*(1.0 - v + log(v)) return scale*d*v end end else g = rand_gamma(shape+1.0, 1.0) w = rand() return scale*g*pow(w, 1.0/shape) end end ## return a random sample from a chi square distribution ## with the specified degrees of freedom function rand_chi_square(dof) rand_gamma(0.5*dof, 2.0) end ## return a random sample from an inverse gamma random variable function rand_inverse_gamma(shape, scale) ## If X is gamma(shape, scale) then ## 1/Y is inverse gamma(shape, 1/scale) 1.0 / rand_gamma(shape, 1.0 / scale) end ## return a sample from a Weibull distribution function rand_weibull(shape, scale) if shape <= 0.0 error("Shape parameter must be positive") end if scale <= 0.0 error("Scale parameter must be positive") end scale * pow(-log(rand()), 1.0 / shape) end ## return a random sample from a Cauchy distribution function rand_cauchy(median, scale) if scale <= 0.0 error("Scale parameter must be positive") end p = rand() median + scale*tan(pi*(p - 0.5)) end ## return a random sample from a Student t distribution function rand_student_t(dof) if dof <= 0 error("Degrees of freedom must be positive") end ## See Seminumerical Algorithms by Knuth y1 = rand_normal(0, 1) y2 = rand_chi_square(dof) y1 / sqrt(y2 / dof) end ## return a random sample from a Laplace distribution ## The Laplace distribution is also known as the double exponential distribution. function rand_laplace(mean, scale) if scale <= 0.0 error("Scale parameter must be positive") end u = rand() if u < 0.5 retval = mean + scale*log(2.0*u) else retval = mean - scale*log(2*(1-u)) end retval end ## return a random sample from a log-normal distribution function rand_log_normal(mu, sigma) return exp(rand_normal(mu, sigma)) end ## return a random sample from a beta distribution function rand_beta(a, b) if a <= 0 || b <= 0 error("Beta parameters must be positive") end ## There are more efficient methods for generating beta samples. ## However such methods are a little more efficient and much more complicated. ## For an explanation of why the following method works, see ## http://www.johndcook.com/distribution_chart.html#gamma_beta u = rand_gamma(a, 1.0) v = rand_gamma(b, 1.0) u / (u + v) end
This code is in the public domain. Do whatever you want to with it, no strings attached.
See also Stand-alone numerical code
Need help making sense of data?