Random number generators for Julia

## return a uniform random sample from the interval (a, b)
function rand_uniform(a, b)
a + rand()*(b - a)
end

## return a random sample from a normal (Gaussian) distribution
function rand_normal(mean, stdev)
if stdev <= 0.0
error("standard deviation must be positive")
end
u1 = rand()
u2 = rand()
r = sqrt( -2.0*log(u1) )
theta = 2.0*pi*u2
mean + stdev*r*sin(theta)
end

## return a random sample from an exponential distribution
function rand_exponential(mean)
if mean <= 0.0
error("mean must be positive")
end
-mean*log(rand())
end

## return a random sample from a gamma distribution
function rand_gamma(shape, scale)
if shape <= 0.0
error("Shape parameter must be positive")
end
if scale <= 0.0
error("Scale parameter must be positive")
end

## Implementation based on "A Simple Method for Generating Gamma Variables"
## by George Marsaglia and Wai Wan Tsang.
## ACM Transactions on Mathematical Software
## Vol 26, No 3, September 2000, pages 363-372.

if shape >= 1.0
d = shape - 1.0/3.0
c = 1.0/sqrt(9.0*d)
while true
x = rand_normal(0, 1)
v = 1.0 + c*x
while v <= 0.0
x = rand_normal(0, 1)
v = 1.0 + c*x
end
v = v*v*v
u = rand()
xsq = x*x
if u < 1.0 -.0331*xsq*xsq || log(u) < 0.5*xsq + d*(1.0 - v + log(v))
return scale*d*v
end
end
else
g = rand_gamma(shape+1.0, 1.0)
w = rand()
return scale*g*pow(w, 1.0/shape)
end
end

## return a random sample from a chi square distribution
## with the specified degrees of freedom
function rand_chi_square(dof)
rand_gamma(0.5*dof, 2.0)
end

## return a random sample from an inverse gamma random variable
function rand_inverse_gamma(shape, scale)
## If X is gamma(shape, scale) then
## 1/Y is inverse gamma(shape, 1/scale)
1.0 / rand_gamma(shape, 1.0 / scale)
end

## return a sample from a Weibull distribution
function rand_weibull(shape, scale)
if shape <= 0.0
error("Shape parameter must be positive")
end
if scale <= 0.0
error("Scale parameter must be positive")
end
scale * pow(-log(rand()), 1.0 / shape)
end

## return a random sample from a Cauchy distribution
function rand_cauchy(median, scale)
if scale <= 0.0
error("Scale parameter must be positive")
end
p = rand()
median + scale*tan(pi*(p - 0.5))
end

## return a random sample from a Student t distribution
function rand_student_t(dof)
if dof <= 0
error("Degrees of freedom must be positive")
end

## See Seminumerical Algorithms by Knuth
y1 = rand_normal(0, 1)
y2 = rand_chi_square(dof)
y1 / sqrt(y2 / dof)
end

## return a random sample from a Laplace distribution
## The Laplace distribution is also known as the double exponential distribution.
function rand_laplace(mean, scale)
if scale <= 0.0
error("Scale parameter must be positive")
end
u = rand()
if u < 0.5
retval = mean + scale*log(2.0*u)
else
retval = mean - scale*log(2*(1-u))
end
retval
end

## return a random sample from a log-normal distribution
function rand_log_normal(mu, sigma)
return exp(rand_normal(mu, sigma))
end

## return a random sample from a beta distribution
function rand_beta(a, b)
if a <= 0 || b <= 0
error("Beta parameters must be positive")
end

## There are more efficient methods for generating beta samples.
## However such methods are a little more efficient and much more complicated.
## For an explanation of why the following method works, see
## http://www.johndcook.com/distribution_chart.html#gamma_beta

u = rand_gamma(a, 1.0)
v = rand_gamma(b, 1.0)
u / (u + v)
end

This code is in the public domain. Do whatever you want to with it, no strings attached.