Playing with the largest known prime

The largest known prime at the moment is P = 257885161 − 1. This means that in binary, the number is a string of 57,885,161 ones.

You can convert binary numbers to other bases that are powers of two, say 2k, by starting at the right end and converting to the new base in blocks of size k. So in base 4, we’d start at the right end and convert pairs of bits to base 4. Until we get to the left end, all the pairs are 11, and so they all become 3’s in base four. So in base 4, P would be written as a 1 followed by 28,942,580 threes.

Similarly, we could write P in base 8 by starting at the right end and converting triples of bits to base 8. Since 57885161 = 3*19295053 + 2, we’ll have two bits left over when we get to the left end, so in base 8, P would be written as 3 followed by 19,295,053 sevens. And since 57885161 = 4*14471290 + 1, the hexadecimal (base 16) representation of P is a 1 followed by 14,471,290 F’s.

What about base 10, i.e. how many digits does P have? The number of digits in a positive integer n is ⌊log10n⌋ + 1 where ⌊x⌋ is the greatest integer less than x. For positive numbers, this just means chop off the decimals and keep the integer part.

We’ll make things slightly easier for a moment and find how many digits P+1 has.

log10(P+1) = log10(257885161) = 57885161 log10(2)  = 17425169.76…

and so P+1 has 17425170 digits, and so does P. How do we know P and P+1 have the same number of digits? There are several ways you could argue this. One is that P+1 is not a power of 10, so the number of digits couldn’t change between P and P+1.

Update: How many digits does P have in other bases?

We can take the formula above and simply substitute b for 10: The base b representation of a positive integer n has ⌊logbn⌋ + 1 digits.

As above, we’d rather work with Q = P+1 than P. The numbers P and Q will have the same number of digits unless Q is a power of the base b. But since Q is a power of 2, this could only happen if b is also a power of two, say b = 2k, and k is a divisor of 57885161. But 57885161 is prime, so this could only happen if b = Q. If b > P, then P has one digit base b. So we can concentrate on the case b < Q, in which case P and Q have the same number of digits. The number of digits in Q is then 57885161 logb(2) + 1.

If b = 2k, we can generalize the discussion above about bases 4, 8, and 16. Let q and r be the quotient and remainder when 57885161 is divided by k. The first digit is r and the remaining q digits are b − 1.

Next post: Last digit of largest known prime

Update: There’s a new record prime as of January 2018, and it’s also a Mersenne prime. Update of this post here.

Related: Applied number theory

Last digits of Fibonacci numbers

If you write out a sequence of Fibonacci numbers, you can see that the last digits repeat every 60 numbers.

The 61st Fibonacci number is 2504730781961. The 62nd is 4052739537881. Since these end in 1 and 1, the 63rd Fibonacci number must end in 2, etc. and so the pattern starts over.

It’s not obvious that the cycle should have length 60, but it is fairly easy to see that there must be a cycle. There are only 10*10 possibilities for two consecutive digits. Since the Fibonacci numbers are determined by a two-term recurrence, and since the last digit of a sum is determined by the sum of the last digits, the sequence of last digits must repeat eventually. Here “eventually” means after at most 10*10 terms.

Replace “10” by any other base in the paragraph above to show that the sequence of last digits must be cyclic in any base. In base 16, for example, the period is 24. In hexadecimal notation the 25th Fibonacci number is 12511 and the 26th is 1DA31, so the 27th must end in 2, etc.

Here’s a little Python code to find the period of the last digits of Fibonacci numbers working in any base b.

from sympy import fibonacci as f

def period(b):
    for i in range(1, b*b+1):
        if f(i)%b == 0 and f(i+1)%b == 1:
            return(i)

This shows that in base 100 the period is 300. So in base 10 the last two digits repeat every 300 terms.

The period seems to vary erratically with base as shown in the graph below.

Related: Applied number theory

The Monosyllabic Raven

David Morice rewrote Edgar Allan Poe’s poem The Raven in words of one syllable. Here is the first stanza:

Once at twelve on one night’s drear, ’twas while I, weak and tired thought here
On the words in lots of quaint and odd old tomes of mind’s lost lore,
While I dozed, so near a nap, there came but then a soft, quick tap,
As of one who made a rap, a rap at my front room’s closed door.
“‘Tis some guest,” I spoke, voice low, “who taps at my front room’s closed door,
Well, Just this, and not much more.”

Morice’s entire poem is available here.

Related post: A rewriting of The Raven that gives a mnemonic for the digits of pi.