Choosing a Computer Language for a Project

Julia. Scala. Lua. TypeScript. Haskell. Go. Dart. Various computer languages new and old are sometimes proposed as better alternatives to mainstream languages. But compared to mainstream choices like Python, C, C++ and Java (cf. Tiobe Index)—are they worth using?

Certainly it depends a lot on the planned use: is it a one-off small project, or a large industrial-scale software application?

Yet even a one-off project can quickly grow to production-scale, with accompanying growing pains. Startups sometimes face a growth crisis when the nascent code base becomes unwieldy and must be refactored or fully rewritten (or you could do what Facebook/Meta did and just write a new compiler to make your existing code base run better).

The scope of different types of software projects and their requirements is so incredibly diverse that any single viewpoint from experience runs a risk of being myopic and thus inaccurate for other kinds of projects. With this caveat, I’ll share some of my own experience from observing projects for many dozens of production-scale software applications written for leadership-scale high performance computing systems. These are generally on a scale of 20,000 to 500,000 lines of code and often require support of mathematical and scientific libraries and middleware for build support, parallelism, visualization, I/O, data management and machine learning.

Here are some of the main issues regarding choice of programming languages and compilers for these codes:

1. Language and compiler sustainability. While the lifetime of computing systems is measured in years, the lifetime of an application code base can sometimes be measured in decades. Is the language it is written in likely to survive and be well-supported long into the future? For example, Fortran, though still used and frequently supported, is is a less common language thus requiring special effort from vendors, with fewer developer resources than more popular languages. Is there a diversity of multiple compilers from different providers to mitigate risk? A single provider means a single point of failure, a high risk; what happens if the supplier loses funding? Are the language and compilers likely to be adaptable for future computer hardware trends (though sometimes this is hard to predict)? Is there a large customer base to help ensure future support? Similarly, is there an adequate pool of available programmers deeply skilled in the language? Does the language have a well-featured standard library ecosystem and good support for third-party libraries and frameworks? Is there good tool support (debuggers, profilers, build tools)?

2. Related to this is the question of language governance. How are decisions about future updates to the language made? Is there broad participation from the user community and responsiveness to their needs? I’ve known members of the C++ language committee; from my limited experience they seem very reasonable and thoughtful about future directions of the language. On the other hand, some standards have introduced features that scarcely anyone ever uses—a waste of time and more clutter for the standard.

3. Productivity. It is said that programmer productivity is limited by the ability of a few lines of code to express high level abstractions that can do a lot with minimal syntax. Does the language permit this? Does the language standard make sense (coherent, cohesive) and follow the principle of least surprise? At the same time, the language should not engulf what might better be handled modularly by a library. For example, a matrix-matrix product that is bound up with the language might be highly productive for simple cases but have difficulty supporting the many variants of matrix-matrix product provided for example by the NVIDIA CUTLASS library. Also, in-language support for CUDA GPU operations, for example, would make it hard for the language not to lag behind in support of the frequent new releases of CUDA.

4. Strategic advantage. The 10X improvement rule states that an innovation is only worth adopting if it offers 10X improvement compared to existing practice according to some metric . If switching to a given new language doesn’t bring significant improvement, it may not be worth doing. This is particularly true if there is an existing code base of some size. A related question is whether the new language offers an incremental transition path for an existing code to the new language (in many cases this is difficult or impossible).

5. Performance (execution speed). Does the language allow one to get down to bare-metal performance rather than going through costly abstractions or an interpreter layer? Are the features of the underlying hardware exposed for the user to access? Is performance predictable? Can one get a sense of the performance of each line of code just by inspection, or is this occluded by abstractions or a complex compilation process? Is the use of just-in-time compilation or garbage collection unpredictable, which could be a problem for parallel computing wherein unexpected “hangs” can be caused by one process unexpectedly performing one of these operations? Do the compiler developers provide good support for effective and accurate code optimization options? Have results from standardized non-cherry-picked benchmarks been published (kernel benchmarks, proxy apps, full applications)?

Early adopters provide a vibrant “early alert” system for new language and tool developments that are useful for small projects and may be broadly impactful. Python was recognized early in the scientific computing community for its potential complementary use with standard languages for large scientific computations. When it comes to planning large-scale software projects, however, a range of factors based on project requirements must be considered to ensure highest likelihood of success.


Experiences with Thread Programming in Microsoft Windows

Lately I’ve been helping a colleague to add worker threads to his GUI-based Windows application.

Thread programming can be tricky. Here are a few things I’ve learned along the way.

Performance. This app does compute-intensive work. It is helpful to offload this very compute-heavy work to a worker thread. Doing this frees the main thread to service GUI requests better.

Thread libraries. Windows has multiple thread libraries, for example Microsoft Foundation Class library threads and C++ standard library threads. It is hazardous to use different thread libraries in the same app. In the extreme case, different thread libraries, such as GOMP  vs. LOMP, used in resp. the GCC and LLVM compiler families, have different threading runtimes which keep track of threads in different ways. Mixing them in the same code can cause hazardous silent errors.

Memory fences are a thing. Different threads can run on different processor cores and hold variables in different respective L1 caches that are not flushed (this to maintain high performance). An update to a variable by one thread is not guaranteed to be visible to other threads without special measures. For example, one could safely transfer information using ::PostMessage coupled with a handler function on the receiver thread. Or one could send a signal using an MFC CEvent on one thread and read its Lock on the other. Also, a thread launch implicitly does a memory fence, so that, at least then, the new thread is guaranteed to correctly see the state of all memory locations.

GUI access should be done from the master thread only, not a worker thread. Doing so can result in deadlock. A worker thread can instead ::PostMessage to ask the master thread to do a GUI action.

Thread launch. By default AfxBeginThread returns a thread handle which MFC takes care of deleting when no longer needed. If you want to manage the life cycle of the handle yourself, you can do something like:

myWorkerThreadHandle = AfxBeginThread(myFunc, myParams,
myWorkerThreadHandle->m_bAutoDelete = false;

Joint use of a shared library like the DAO database library has hazards. One should beware of using the library to allocate something in one thread and deallocating in another, as this will likely allocate in a thread-local heap or stack instead of a shared thread-safe heap, this resulting in a crash.

Initialization. One should call CoInitializeEx(NULL, COINIT_APARTMENTTHREADED) and AfxDaoInit() (if using DAO) at thread initialization on both master and worker threads, and correspondingly CoUninitialize() and AfxDaoTerm() at completion of the thread.

Monitoring of thread state can be done with
WaitForSingleObject(myWorkerThreadHandle->m_hThread, 0) to determine if the thread has completed or WaitForSingleObject(myWorkerThreadHandle->m_hThread, INFINITE) for a blocking wait until completion.

Race conditions are always a risk but can be avoided by careful reasoning about execution. Someone once said up to 90% of code errors can be found by desk checking [1]. Race conditions are notoriously hard to debug, partly because they can occur nondeterministically. There are tools for trying to find race condition errors, though I’ve never tried them.

So far I find no rigorous specification of the MFC threading model online that touches on all these concerns. Hopefully this post is useful to someone else working through these issues.


[1] Dasso, Aristides., Funes, Ana. Verification, Validation and Testing in Software Engineering. United Kingdom: Idea Group Pub., 2007, p. 163.