Simple clinical trial of four COVID-19 treatments

A story came out in Science yesterday saying the World Health Organization is launching a trial of what it believes are the the four most promising treatments for COVID-19 (a.k.a. SARS-CoV-2, novel coronavirus, etc.)

The four treatment arms will be

  • Remdesivir
  • Chloroquine and hydroxychloroquine
  • Ritonavir + lopinavir
  • Ritonavir + lopinavir + interferon beta

plus standard of care as a control arm.

I find the design of this trial interesting. Clinical trials are often complex and slow. Given a choice in a crisis between ponderously designing the perfect clinical trial and flying by the seat of their pants, health officials would rightly choose the latter. On the other hand, it would obviously be good to know which of the proposed treatments is most effective. So this trial has to be a compromise.

The WHO realizes that the last thing front-line healthcare workers want right now is the added workload of conducting a typical clinical trial. So this trial, named SOLIDARITY, will be very simple to run. According to the Science article,

When a person with a confirmed case of COVID-19 is deemed eligible, the physician can enter the patient’s data into a WHO website, including any underlying condition that could change the course of the disease, such as diabetes or HIV infection. The participant has to sign an informed consent form that is scanned and sent to WHO electronically. After the physician states which drugs are available at his or her hospital, the website will randomize the patient to one of the drugs available or to the local standard care for COVID-19.

… Physicians will record the day the patient left the hospital or died, the duration of the hospital stay, and whether the patient required oxygen or ventilation, she says. “That’s all.”

That may sound a little complicated, but by clinical trial standards the SOLIDARITY trial is shockingly simple. Normally you would have countless detailed case report forms, adverse event reporting, etc.

The statistics of the trial will be simple on the front end but complicated on the back end. There’s no sophisticated algorithm assigning treatments, just a randomization between available treatment options, including standard of care. I don’t see how you could do anything else, but this will create headaches for the analysis.

Patients are randomized to available treatments—what else could you do? [1]—which means the treatment options vary by site and over time. The control arm, standard of care, also varies by site and could change over time as well.  Also, this trial is not double-blind. This is a trial optimized for the convenience of frontline workers, not for the convenience of statisticians.

The SOLIDARITY trial will be adaptive in the sense that a DSMB will look at interim results and decide whether to drop treatment arms that appear to be under-performing. Ideally there would be objective algorithms for making these decisions, carefully designed and simulated in advanced, but there’s no time for that. Better to start learning immediately than to spend six months painstakingly designing a trial. Even if we could somehow go back in time and start the design process six months ago, there could very well be contingencies that the designers couldn’t anticipate.

The SOLIDARITY trial is an expedient compromise, introducing a measure of scientific rigor when there isn’t time to be as rigorous as we’d like.

More clinical trial posts

[1] You could limit the trial to sites that have all four treatment options available, cutting off most potential sources of data. The data would not be representative of the world at large and accrual would be slow. Or you could wait until all four treatments were distributed to clinics around the world, but there’s no telling how long that would take.

4 thoughts on “Simple clinical trial of four COVID-19 treatments

  1. How could you change the interpretation of the data to deal with the fact that different hospital’s populations don’t have the same set of options available? I have the vague idea that it would increase margins of error, or reduce power, but I don’t know much stats.

  2. You’d have to use some sort of hierarchical / random effects model because even if all sites had the same drugs, clearly there’s much else that varies by site.

    It’s no worse than a non-randomized trial. At least they’re randomizing when they can.

    Maybe it will turn out that a large number of sites have the same range of treatments, and you could look at that subset.

    I’m curious how the DSMB will make its decisions. If one treatment clearly does better or worse than the rest, it might be an easy decision. No doubt people will analyze the data all kinds of different ways after the pandemic is over. A cornucopia of thesis topics.

  3. James Cavenaugh

    Will the raw data (patient level) be publicly available for different analyses? If so, where?

Leave a Reply

Your email address will not be published. Required fields are marked *