False positives for medical papers

My previous two posts have been about false research conclusions and false positives in medical tests. The two are closely related.

With medical testing, the prevalence of the disease in the population at large matters greatly when deciding how much credibility to give a positive test result. Clinical studies are similar. The proportion of potential genuine improvements in the class of treatments being tested is an important factor in deciding how credible a conclusion is.

In medical tests and clinical studies,  we’re often given the opposite of what we want to know. We’re given the probability of the evidence given the conclusion, but we want to know the probability of the conclusion given the evidence. These two probabilities may be similar, or they may be very different.

The analogy between false positives in medical testing and false positives in clinical studies is helpful, because the former is easier to understand that the latter. But the problem of false conclusions in clinical studies is more complicated. For one thing, there is no publication bias in medical tests: patients get the results, whether positive or negative. In research, negative results are usually not published.

One thought on “False positives for medical papers

Leave a Reply

Your email address will not be published. Required fields are marked *