Allen William Johnson [1] discovered the following magic square whose entries are all squares.

The following Python code verifies that this is a magic square.
import numpy as np
M = np.array(
[[ 30**2, 246**2, 172**2, 45**2],
[ 93**2, 116**2, 66**2, 258**2],
[126**2, 138**2, 237**2, 44**2],
[260**2, 3**2, 54**2, 150**2]
])
def verify(M):
m, n = M.shape
assert(m == n)
c = sum(M[0, :])
semimagic = True
for i in range(m):
semimagic &= sum(M[i,:]) == c
semimagic &= sum(M[:,i]) == c
d1 = sum(M[i, i ] for i in range(m))
d2 = sum(M[i,-i-1] for i in range(m))
magic = semimagic and (d1 == d2 == c)
if magic:
return "magic"
if semimagic:
return "semi-magic"
return "not magic"
print(verify(M))
More magic square posts
- Chess themed magic squares: Knight, King
- Planet themed magic squares: Jupiter, Mars
- Language themed magic squares: Spanish, French
[1] Allen William Johnson. Journal of Recreational Mathematics. 22 (1990), 38
Now I’m curious if there exist any magic squares of the form […]^2, and if a hierarchy of squaring is possible.
Here is another (smaller) one, purportedly from Euler (1770):
https://twitter.com/pickover/status/869245576654852096?s=20
Eat your heart out, Matt Parker!
FYI, the discoverer’s name is Allan W. Johnson, Jr.
I added the following sequence to the OEIS: https://oeis.org/A359383
It has a link back to this blog page.