Magic square of squares

Allen William Johnson [1] discovered the following magic square whose entries are all squares.

\begin{bmatrix} 30^2 & 246^2 & 172^2 & 45^2 \\ 93^2 & 116^2 & 66^2 & 258^2 \\ 126^2 & 138^2 & 237^2 & 44^2 \\ 260^2 & 3^2 & 54^2 & 150^2 \\ \end{bmatrix}

The following Python code verifies that this is a magic square.

    import numpy as np
    
    M = np.array(
        [[ 30**2, 246**2, 172**2,  45**2],
         [ 93**2, 116**2,  66**2, 258**2],
         [126**2, 138**2, 237**2,  44**2],
         [260**2,   3**2,  54**2, 150**2]
        ])
    
    def verify(M):
    
        m, n = M.shape
        assert(m == n)
    
        c = sum(M[0, :])
        semimagic = True
        for i in range(m):
            semimagic &= sum(M[i,:]) == c
            semimagic &= sum(M[:,i]) == c
    
        d1 = sum(M[i, i  ] for i in range(m))
        d2 = sum(M[i,-i-1] for i in range(m))
        magic = semimagic and (d1 == d2 == c)
    
        if magic:
            return "magic"
        if semimagic:
            return "semi-magic"
        return "not magic"
    
    print(verify(M))

More magic square posts

[1] Allen William Johnson. Journal of Recreational Mathematics. 22 (1990), 38

5 thoughts on “Magic square of squares

  1. Now I’m curious if there exist any magic squares of the form […]^2, and if a hierarchy of squaring is possible.

Comments are closed.