Computing normal probabilities with a simple calculator

If you need to calculate Φ(x), the CDF of a standard normal random variable, but don’t have Φ on your calculator, you can use the approximation [1]

Φ(x) ≈ 0.5 + 0.5*tanh(0.8 x).

If you don’t have a tanh function on your calculator, you can use

tanh(0.8x) = (exp(1.6x) – 1) / (exp(1.6x) + 1).

This saves a few keystrokes over computing tanh directly from its definition [2].


For example, suppose we want to compute Φ(0.42) using bc, the basic calculator on Unix systems. bc only comes with a few math functions, but it has a function e for exponential. Our calculation would look something like this.

    > bc -lq
    t = e(1.6*0.42); (1 + (t-1)/(t+1))/2

The exact value of Φ(0.42) is 0.66275….


It’s hard to see the difference between Φ(x) and the approximation above.

Comparing Phi and its approximation

A plot of the approximation error shows that the error is greatest in [-2, -1] and [1, 2], but the error is especially small for x near 0 and x far from 0.

Error in approximating Phi

Related posts

[1] Anthony C. Robin. A Quick Approximation to the Normal Integral. The Mathematical Gazette, Vol. 81, No. 490 (Mar., 1997), pp. 95-96

[2] Proof: tanh(x) is defined to be (exex) / (ex + ex). Multiply top and bottom by ex to get (e2x – 1) / (e2x + 1).

Leave a Reply

Your email address will not be published. Required fields are marked *