Four brief reviews

Princeton University Press and No Starch Press both sent me a couple books this week. Here are a few brief words about each.

The first from Princeton was The Best Writing on Mathematics 2014. My favorite chapters were The Beauty of Bounded Gaps by Jordan Ellenberg and The Lesson of Grace in Teaching by Francis Su. The former is a very high-level overview of recent results regarding gaps in prime numbers. The latter is taken from the Francis’ Haimo Teaching Award lecture. A recording of the lecture and a transcript are available here.

The second book from Princeton was a new edition of Andrew Hodges’ book Alan Turing: The Enigma. This edition has a new cover and the new subtitle “The Book That Inspired the Film ‘The Imitation Game.'” Unfortunately I’m not up to reading a 768-page biography right now.

The first book from No Starch Press was a new edition of The Book of CSS3: A Developer’s Guide to the Future of Web Design by Peter Gasston. The book says from the beginning that it is intended for people who have a lot of experience with CSS, including some experience with CSS 3. I tend to ignore such warnings; many books are more accessible to beginners than they let on. But in this case I do think that someone with more CSS experience would get more out of the book. This looks like a good book, and I expect I’ll get more out of it later.

The final book was a new edition of How Linux Works: What Every Superuser Should Know by Brian Ward. I’ve skimmed through this book and would like to go back and read it carefully, a little at a time. Most Unix/Linux books I’ve seen either dwell on shell commands or dive into system APIs. This one, however, seems to live up to its title and give the reader an introduction to how Linux works.

“Hello world” is the hard part

Kernighan and Ritchie’s classic book The C Programming Language began with a sample C program that printed “hello world.” Since then “hello world” has come describe the first program you write with any technology, even if it doesn’t literally print “hello world.”

Hello-world programs are often intimidating. People think “I must be a dufus because I find hello-world hard. At this rate I’ll never get to anything interesting.”

The problem is that we confuse the first task with the easiest task. Hello-world programs are almost completely arbitrary. You can’t deduce what a compiler is named, where files must be located, how they must be formatted, etc. You have to be told. The amount of arbitrary material you need to learn is greatest up-front and slowly decreases.

When I started programming I thought I’d quickly get past the hello-world stage and only write substantial programs from then on. Instead, it seems I’ve spent a good chunk of my career writing hello-world programs with no end in sight.

***

No discussion of hello-world programs would be complete without mentioning possibly the most intimidating hello-world program: the first Windows program in Charles Petzold’s Programming Windows book. I was only able to find the program from the Windows 98 edition of his book. I don’t recall how it differs much from the program in his first edition, but I vaguely remember the original being worse.


/*------------------------------------------------------------
   HELLOWIN.C -- Displays "Hello, Windows 98!" in client area
                 (c) Charles Petzold, 1998
  ------------------------------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
                    PSTR szCmdLine, int iCmdShow)
{
     static TCHAR szAppName[] = TEXT ("HelloWin") ;
     HWND         hwnd ;
     MSG          msg ;
     WNDCLASS     wndclass ;

     wndclass.style         = CS_HREDRAW | CS_VREDRAW ;
     wndclass.lpfnWndProc   = WndProc ;
     wndclass.cbClsExtra    = 0 ;
     wndclass.cbWndExtra    = 0 ;
     wndclass.hInstance     = hInstance ;
     wndclass.hIcon         = LoadIcon (NULL, IDI_APPLICATION) ;
     wndclass.hCursor       = LoadCursor (NULL, IDC_ARROW) ;
     wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
     wndclass.lpszMenuName  = NULL ;
     wndclass.lpszClassName = szAppName ;

     if (!RegisterClass (&wndclass))
     {
          MessageBox (NULL, TEXT ("This program requires Windows NT!"), 
                      szAppName, MB_ICONERROR) ;
          return 0 ;
     }
     
     hwnd = CreateWindow (szAppName,                  // window class name
                          TEXT ("The Hello Program"), // window caption
                          WS_OVERLAPPEDWINDOW,        // window style
                          CW_USEDEFAULT,              // initial x position
                          CW_USEDEFAULT,              // initial y position
                          CW_USEDEFAULT,              // initial x size
                          CW_USEDEFAULT,              // initial y size
                          NULL,                       // parent window handle
                          NULL,                       // window menu handle
                          hInstance,                  // program instance handle
                          NULL) ;                     // creation parameters
     
     ShowWindow (hwnd, iCmdShow) ;
     UpdateWindow (hwnd) ;
     
     while (GetMessage (&msg, NULL, 0, 0))
     {
          TranslateMessage (&msg) ;
          DispatchMessage (&msg) ;
     }
     return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
     HDC         hdc ;
     PAINTSTRUCT ps ;
     RECT        rect ;
     
     switch (message)
     {
     case WM_CREATE:
          PlaySound (TEXT ("hellowin.wav"), NULL, SND_FILENAME | SND_ASYNC) ;
          return 0 ;
          
     case WM_PAINT:
          hdc = BeginPaint (hwnd, &ps) ;
          
          GetClientRect (hwnd, &rect) ;
          
          DrawText (hdc, TEXT ("Hello, Windows 98!"), -1, &rect,
                    DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;
          
          EndPaint (hwnd, &ps) ;
          return 0 ;
          
     case WM_DESTROY:
          PostQuitMessage (0) ;
          return 0 ;
     }
     return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Software development becoming less mature?

Michael Fogus posted on Twitter this morning

Computing: the only industry that becomes less mature as more time passes.

The immaturity of computing is used to excuse every ignorance. There’s an enormous body of existing wisdom but we don’t care.

I don’t know whether computing is becoming less mature, though it may very well be on average, even if individual developers become more mature.

One reason is that computing is a growing profession, so people are entering the field faster than they are leaving. That lowers average maturity.

Another reason is chronological snobbery, alluded to in Fogus’s second tweet. Chronological snobbery is pervasive in contemporary culture, but especially in computing. Tremendous hardware advances give the illusion that software development has advanced more than it has. What could I possibly learn from someone who programmed back when computers were 100x slower? Maybe a lot.

Related posts:

A brief note on Moore’s law
Moore’s law and software bloat

Classical programming

The classical education model is based on the trivium of grammar, logic, and rhetoric. See, for example, Dorothy Sayers’ essay The Lost Tools of Learning.

The grammar stage of the trivium could be literal language grammar, but it also applies more generally to absorbing the basics of any subject and often involves rote learning.

The logic stage is more analytic, examining the relationships between the pieces gathered in the grammar stage. Students learn to construct sound arguments.

The rhetoric stage is focused on eloquent and persuasive expression. It is more outwardly focused than the previous stages, more considerate of others. Students learn to create arguments that are not only logically correct, but also memorable, enjoyable, and effective.

It would be interesting to see a classical approach to teaching programming. Programmers often don’t get past the logic stage, writing code that works (as far as they can tell). The rhetoric stage would train programmers to look for solutions that are not just probably correct, but so clear that they are persuasively correct. The goal would be to write code that is testable, maintainable, and even occasionally eloquent.

 

Parthenon replica in Nashville, TN.

Benchmarking C++, Python, R, etc.

The other day Travis Oliphant pointed out an interesting paper: A Comparison of Programming Languages in Economics. The paper benchmarks several programming languages on a computational problem in economics.

All the usual disclaimers about benchmarks apply, your mileage may vary, etc. See the paper for details.

Here I give my summary of their summary of their results. The authors ran separate benchmarks on Mac and Windows. The results were qualitatively the same, so I just report the Windows results here.

Times in the table below are relative to the fastest C++ run.

Language Time
C++ 1.00
Java 2.10
Julia 2.70
CPython 155.31
Python with Numba 1.57
R 505.09
R using compiler package 243.38

 

The most striking result is that the authors were able to run their Python code 100x faster, achieving performance comparable to C++, by using Numba.

Weak static type systems

Comment by Simon Peyton Jones in an interview:

People often dislike static type systems because they’ve only met weak ones. A weak or not very expressive type system gets in your way all the time. It prevents you from writing functions you want to write that you know are fine. … The solution is not to abandon the type system but to make the type system more expressive.

In particular, he mentions Haskell’s polymorphic types and type inference as ways to make strong static typing convenient to use.

Look-behind regex

Look-behind is one of those advanced/obscure regular expression features that I don’t use frequently enough to remember the syntax, but just frequently enough that I wish I could remember it.

Look-behind can be positive or negative. Look-behind says “match this position only if the preceding text matches (does not match) the following  pattern.”

The syntax in Perl and similar regular expression implementations is (?<= … ) for positive look-behind and (?<! … ) for negative look-behind. For the longest time I couldn’t remember whether the next symbol after ? was the direction (i.e. < for behind) or the polarity (= for positive, ! for negative). I was more likely to guess wrong unless I’d used the syntax recently.

The reason I was tempted to get these wrong is that I thought “positive look-behind” and “negative look-behind.” That’s how these patterns are described. But this means the words and symbols come in a different order. If you think look-behind positive and look-behind negative then the words and the symbols come in the same order:

look (?
behind <
positive =
negative !

Maybe this syntax comes more naturally to people who speak French and other languages where adjectives follow the thing they describe. English word order was tripping me up.

By the way, the syntax for look-ahead patterns is simpler: just leave out the <. The default direction for look-around patterns is forward. You don’t have to remember whether the symbol for direction or parity comes first because there is no symbol for direction.

Programming languages and magic

In the context of programming languages, “magic” is often a pejorative term for code that does something other than what it appears to do.

Programmers seem to have a love/hate relationship with magic. Even people who say that don’t like magic (e.g. because it’s hard to debug) end up using it. The Haskell community prides itself on having a transparent language with no magic, and yet monads are slightly magical. The whole purpose of a monad is to hide explicit data flow, though in a principled way. Haskell’s do notation is more magical, and templates are even more magical still. (However, I do hear some Haskellers express disdain for templates.)

People who like magic tend to use the word “automagic” instead. It means about the same thing as “magic” but with a positive connotation.

To conclude with a couple sweeping generalizations, magic fans tend to be tool-oriented (such as Microsoft developers) while magic detractors tend to be language-oriented (such as Haskell developers ).

Update: Someone asked me on Twitter about the difference between abstraction and magic. I’d say abstraction hides details, but magic is actively misleading or ironic.

 

Don’t be a technical masochist

There’s an old joke from Henny Youngman:

I told the doctor I broke my leg in two places. He told me to quit going to those places.

Sometimes tech choices are that easy: if something is too hard, stop doing it. A great deal of pain comes from using a tool outside its intended use, and often that’s avoidable.

For example, when regular expressions get too hard, I stop using regular expressions and write a little procedural code. Or when Python is too slow, I try some simple ways of speeding it up, and if that’s not good enough I switch from Python to C++. If something is too hard to do in Windows, I’ll do it in Linux, and vice versa.

Sometimes there’s not a better tool available and you just have to slog through with what you have. And sometimes you don’t have the freedom to use a better tool even though one is available. But a lot of technical pain is self-imposed. If you keep breaking your leg somewhere, stop going there.

Monads are hard because …

Here’s a nice quip from Luke Gorrie on Twitter:

Monads are hard because there are so many bad monad tutorials getting in the way of finally finding Wadler’s nice paper.

Here’s the paper by Philip Wadler that I expect Luke Gorrie had in mind: Monads for functional programming.

Here’s the key line from Wadler’s paper:

Pure functional languages have this advantage: all flow of data is made explicit. And this disadvantage: sometimes it is painfully explicit.

That’s the problem monads solve: they let you leave implicit some of the repetitive code otherwise required by functional programming. That simple but critical point left out of many monad tutorials.

Dan Piponi wrote a blog post You Could Have Invented Monads! (And Maybe You Already Have) very much in the spirit of Wadler’s paper. He starts with the example of adding logging to a set of functions. You could have every function return not just the return value that you’re interested in but also the updated state of the log. This quickly gets messy. For example, suppose your basic math functions write to an error log if you call them with illegal arguments. That means your square root function, for example, has to take as input not just a real number but also the state of the error log before it was called. Monads give you a way of effectively doing the same thing, but conceptually separating the code that takes square roots from the code that maintains the error log.

As for “so many bad monad tutorials,” see Brent Yorgey on the monad tutorial fallacy.

By the way, this post is not Yet Another Monad Tutorial. It’s simply an advertisement for the tutorials by Philip Wadler and Dan Piponi.