Dave Brubeck mass

Judging from the comments on previous posts, it seems a good number of Dave Brubeck fans read this blog. Everyone familiar with Dave Brubeck knows about Take Five from his album Time Out.

But I wonder how many know about his album “To Hope! A Celebration.”

The album is a Roman Catholic mass containing beautiful mixture of classical and jazz music. It features the Cathedral Choral Society Chorus & Orchestra as well as the Dave Brubeck Quartet. It was recorded live at Washington National Cathedral on June 12, 1995.

According to Wikipedia, Brubeck was not a Catholic when the mass was commissioned but joined the Catholic church shortly after the piece was finished.

More Dave Brubeck posts

Sharps and flats in HTML

Apparently there’s no HTML entity for the flat symbol, ♭. In my previous post, I just spelled out B-flat because I thought that was safer; it’s possible not everyone would have the fonts installed to display B♭ correctly.

So how do you display music symbols for flat, sharp, and natural in HTML? You can insert any symbol if you know its Unicode value, though you run the risk that someone viewing the page may not have the necessary fonts installed to view the symbol. Here are the Unicode values for flat, natural, and sharp.

Since the flat sign has Unicode value U+266D, you could enter ♭ into HTML to display that symbol.

The sharp sign raises an interesting question. I’m sure most web pages referring to G-sharp would use the number sign # (U+0023) rather than the sharp sign ♯ (U+266F). And why not? The number sign is conveniently located on a standard keyboard and the sharp sign isn’t. It would be nice if people used sharp symbols rather than number signs. It would make it easier to search on specifically musical terms. But it’s not going to happen.

Update: See this post on font support for Unicode. Most people can see all three symbols, but some, especially Android users, might not see the natural sign.

Related posts

Typesetting music with LilyPond

I tried typesetting music in LaTeX some time ago and gave up. The packages I found were hard to install, the examples didn’t work, etc. This weekend I decided to try again. I tried plowing through the MusiXTeX documentation and got no further than I did last time.

I posted a note on StackOverflow and got some good responses. Nikhil Chelliah suggested I look at LilyPond. I had looked at LilyPond before, and @jleedev explained how to integrate LaTeX and LilyPond.

Here’s some sheet music I included in my previous post, March in 7/4 time.

sheet music example

Here’s a full-sized PDF file version of the music above. And here’s the LilyPond source code used to create the music.

\relative c' {
\time 7/4
\key f \major
\clef treble
f g f \times 2/3{ c8 c c} f4 g a
g a8. bes16 a4 g f g c,
f g f \times 2/3{ c8 c c} f4 g a
g a8. bes16 a4 g f e f
}

The notation looks cryptic at first, but it makes sense after a few minutes. The command relative c' means that the following pitches will be relative to middle C. For example, the first note, F, is the F closest to middle C. Each note is the same length as the previous note by default, and the first note is a quarter note by default. The notation c8 means that the C is an eighth note, except it’s in the context of a triplet (times 2/3) and so it’s an eighth note triplet. The next F is denoted f4 to indicate that we’re back to quarter notes.

The notation a8. says that the A is a dotted eighth note. For the next note, bes16 means a B-flat sixteenth note. The suffix “es” stands for “flat” and “is” stands for “sharp.” (The documentation says it’s Dutch. I’ve never seen it before.) I don’t understand why I had to tell it that the B was flat. The code specified earlier that the key was F major, which implies B’s are flat. I suppose the code for individual notes is decoupled from the code to draw the key signature. That would make entering music painful in keys that have lots of sharps or flats. Maybe there’s a way to specify default sharps or flats.

The comma in c, gives the absolute pitch of the C. In relative mode, LilyPond assumes by default that each pitch name refers to the pitch closest to its predecessor. The C closest to the previous note, F, would have been the C up one fourth rather than down one fifth, so the comma was necessary to tell LilyPond to go down.

If I were to do a lot of music processing, I’d probably look at a commercial package such as Sibelius. But for now I’m just interested in producing small excerpts like that above, and it looks like LilyPond may be fine.

Update: I double checked the rules about flats etc. Yes, I do have to specify explicitly that the B in this example is B-flat. If I just say b rather than bes, LilyPond will add a natural sign in front of the B! It’s strange. It is aware of the key signature: when I tell it the B is flat, it says “OK, then I don’t have to mark that specially since it’s implicit in the key signature.” And if I don’t tell it the B is flat, it says “Oh, that’s an exception to the key signature. Better mark it with a natural sign.”

March in 7/4 time

After writing my post on music in 5/4 time, I remembered a march in 7/4 time that I played in band many years ago. Here’s an excerpt, about all I can remember.

sheet music example

In case the music above is too hard to read, here’s a full-sized PDF file version.

Marches are always in even meters: your left foot has to come down on the first beat of every measure when you’re marching. And yet this odd meter tune comes across as a convincing march. (It was a concert march. Actually marching to it would have been odd, pun intended.)

This march had a 4/4 + 3/4 feel, emphasis on the first and fifth beats of each 7/4 measure.

I’ve just started blogging about music recently, and I’ve got a lot to learn. I’m not set up to record audio clips. My next post will describe the software I used to post the sheet music above.

Update: Many thanks to Nikhil Chelliah for identifying the march. It’s the first movement from Third Suite by Robert Jager. The sheet music and a sound clip are available here.

Related post: Blue Rondo à la Turk

Beatbox flute

Greg Pattillo plays beatbox flute. It’s hard to imagine what that means until you hear it. Here’s a video of Pattillo playing the theme from Sesame Street.

And here’s a video of Pattillo playing Peter and the Wolf.

Blue Rondo a la Turk

Shawna Kennedy left a comment on my previous post on music in odd meters that made something click. She pointed out that in Turkish and Romany music, 9/8 is often divided as 2+2+2+3, unlike the Western triple-triple feel (3+3+3). That style of 9/8 music would be an “odd meter” while other 9/8 music would not. When I read her comment about “1-2, 1-2, 1-2, 1-2-3,” Dave Brubeck’s tune Blue Rondo à la Turk started playing in my head. I love that song. I first heard it over 20 years ago and I still whistle it fairly often. My kids probably recognize the tune even though they haven’t heard the recording.

Now I finally get what “à la Turk” means. It must be a reference to the Turkish rhythm of the 9/8 theme. You can hear a short excerpt of Blue Rondo à la Turk at here.

Update: The article on Blue Rondo in Wikipedia says that it was based on Mozart’s Rondo alla Turca. I listened to Mozart’s rondo. It’s a famous tune — you’d probably recognize it — but I didn’t know it by name. I would never have drawn a connection between the Mozart rondo and Brubeck’s rondo. Maybe the Wikipedia article is wrong, or maybe Brubeck’s imagination moved pretty far from his inspiration.

Music in 5/4 time

Time signatures in music are written like fractions. The numerator tells how the beats are grouped into measures. For the vast majority of Western music in every genre — popular, classical, jazz, country, etc. — this numerator is divisible by 2 or 3, but hardly ever by any other prime numbers. Musicians call exceptional time signatures “odd meters” though this is misleading. When they say “odd” they mean “odd numbers other than powers of 3.” For example, musicians would not call 9/8 and odd meter, but they would call 7/8 or 11/8 odd.

The most popular piece of music by far written in 5/4 time was Dave Brubeck’s Take Five. It sold over a million records in 1961 and continues to be popular 50 years after it was written.  Here’s a video of the Brubeck Quartet performing Take Five in 1966.

[Update: video removed]

And here is a mind-bending mash up of Take Five by Radiohead. (Thanks to @explicitmemory for the link.)

Some music written in odd meters sounds like an intellectual exercise rather than a beautiful tune. The music of Dave Brubeck is a notable exception. In addition to Take Five, he composed other popular music in odd meters, such as Unsquare Dance written in 7/4.  (Listen to a sample of Unsquare Dance here.) Another song in 5/4 I enjoy is “How Deep the Father’s Love for Us” recorded by Sarah Sadler.

Theme songs for action movies sometimes have music written in odd meters. For example: Mission Impossible, Mod Squad, and The Incredibles.

Update: See the follow-up post on Blue Rondo à la Turk.

Related: Psychoacoustics

Logarithms, music, and arsenic

Scientific American has an article suggesting that our natural sense of numbers may operate on a logarithmic scale rather than a linear scale.

It has long been known that our senses often work on a logarithmic scale. For example, sound intensity is measured in decibels, a logarithmic scale. Pitch is perceived on a logarithmic scale, as the Pythagoreans discovered. When moving up a chromatic scale, it’s not the differences in frequencies but the ratios of frequencies that are constant. An octave is a ratio of 2 to 1, so a half step is a ratio of 21/12 to one since there are 12 half step in an octave.

The Statistical Modeling, Causal Inference, and Social Science blog gives an interesting example combining linear and logarithmic perceptions. They quote a study suggesting that when deciding whether to walk to a new well based on information regarding arsenic levels, Bangladeshis perceived “distance to nearest safe well” linearly but perceived “arsenic level” logarithmically.