Typesetting modal logic

Modal logic extends propositional logic with two new operators, □ (“box”) and ◇ (“diamond”). There are many interpretations of these two symbols, the most common being necessity and possibility respectively. That is, □p means the proposition p is necessary, and ◇p means that p is possible. Another interpretation is using the symbols to represent things a person knows to be true and things that may be true as far as that person knows.

There are also many axiom systems for inference concerning these operators. For example, some axiom systems include the rule

\Box p \rightarrow \Box \Box p

and some do not. If you interpret □ as saying a proposition is provable, this axiom says whatever is provable is provably provable, which makes sense. But if you take □ to be a statement about what an agent knows, you may not want to say that if an agent knows something, it knows that it knows it.

See the next post for an example of applying logic to security, a logic with lots of modal operators and axioms. But for now, we’ll focus on how to typeset the box and diamond operators.

LaTeX

In LaTeX, the most obvious commands would be \box and \diamond, but that doesn’t work. There is no \box command, though there is a \square command. And although there is a \diamond command, it produces a symbol much smaller than \square and so the two look odd together. The two operators are dual in the sense that

\begin{align*} \Box p &= \neg \Diamond \neg p \\ \Diamond p &= \neg \Box \neg p \end{align*}

and so they should have symbols of similar size. A better approach is to use \Box and \Diamond. Those were used in the displayed equations above.

Unicode

There are many box-like and diamond-like symbols in Unicode. It seems reasonable to use U+25A1 for box and U+25C7 for diamond. I don’t know of any more semantically appropriate characters. There are no Unicode characters with “modal” in their name, for example.

HTML

You can always insert Unicode characters into HTML by using &#x, followed by the hexadecimal value of the codepoint, followed by a semicolon. For example, I typed □ and ◇ to enter the box and diamond symbols above.

If you want to stick to HTML entities because they’re easier to remember, you’re mostly out of luck. There is no HTML entity for the box operator. There is an entity ◊ for “lozenge,” the typographical term for a diamond. This HTML entity corresponds to U+25CA and is smaller than U+25c7 recommended above. As discussed in the context of LaTeX, you want the box and diamond operators to have a similar size.

Related posts

Fraktur symbols in mathematics

When mathematicians run out of symbols, they turn to other alphabets. Most math symbols are Latin or Greek letters, but occasionally you’ll run into Russian or Hebrew letters.

Sometimes math uses a new font rather than a new alphabet, such as Fraktur. This is common in Lie groups when you want to associate related symbols to a Lie group and its Lie algebra. By convention a Lie group is denoted by an ordinary Latin letter and its associated Lie algebra is denoted by the same letter in Fraktur font.

lower case alphabet in Fraktur

LaTeX

To produce Fraktur letters in LaTeX, load the amssymb package and use the command \mathfrak{}.

Symbols such as \mathfrak{A} are math symbols and can only be used in math mode. They are not intended to be a substitute for setting text in Fraktur font. This is consistent with the semantic distinction in Unicode described below.

Unicode

The Unicode standard tries to distinguish the appearance of a symbol from its semantics, though there are compromises. For example, the Greek letter Ω has Unicode code point U+03A9 but the symbol Ω for electrical resistance in Ohms is U+2621 even though they are rendered the same [1].

The letters a through z, rendered in Fraktur font and used as mathematical symbols, have Unicode values U+1D51E through U+1D537. These values are in the “Supplementary Multilingual Plane” and do not commonly have font support [2].

The corresponding letters A through Z are encoded as U+1D504 through U+1D51C, though interestingly a few letters are missing. The code point U+1D506, which you’d expect to be Fraktur C, is reserved. The spots corresponding to H, I, and R are also reserved. Presumably these are reserved because they are not commonly used as mathematical symbols. However, the corresponding bold versions U+1D56C through U+ID585 have no such gaps [3].

Footnotes

[1] At least they usually are. A font designer could choose provide different glyphs for the two symbols. I used the same character for both because some I thought some readers might not see the Ohm symbol properly rendered.

[2] If you have the necessary fonts installed you should see the alphabet in Fraktur below:
𝔞 𝔟 𝔠 𝔡 𝔢 𝔣 𝔤 𝔥 𝔦 𝔧 𝔨 𝔩 𝔪 𝔫 𝔬 𝔭 𝔮 𝔯 𝔰 𝔱 𝔲 𝔳 𝔴 𝔵 𝔶 𝔷

I can see these symbols from my desktop and from my iPhone, but not from my Android tablet. Same with the symbols below.

[3] Here are the bold upper case and lower case Fraktur letters in Unicode:
𝕬 𝕭 𝕮 𝕯 𝕰 𝕱 𝕲 𝕳 𝕴 𝕵 𝕶 𝕷 𝕸 𝕹 𝕺 𝕻 𝕼 𝕽 𝕾 𝕿 𝖀 𝖁 𝖂 𝖃 𝖄 𝖅
𝖆 𝖇 𝖈 𝖉 𝖊 𝖋 𝖌 𝖍 𝖎 𝖏 𝖐 𝖑 𝖒 𝖓 𝖔 𝖕 𝖖 𝖗 𝖘 𝖙 𝖚 𝖛 𝖜 𝖝 𝖞 𝖟

Putting a brace under something in LaTeX

Here’s a useful LaTeX command that I learned about recently: \underbrace.

It does what it sounds like it does. It puts a brace under its argument.

I used this a few days ago in the post on the new prime record when I wanted to show that the record prime is written in hexadecimal as a 1 followed by a long string of Fs.

1\underbrace{\mbox{FFF \ldots FFF}}_\mbox{{\normalsize 9,308.229 F's}}

The code that produced is is

1\underbrace{\mbox{FFF \ldots FFF}}_\mbox{{\normalsize 9,308.229 F's}}

The sizing is a little confusing. Without \normalsize the text under the brace would be as large as the text above.

Why don’t you simply use XeTeX?

From an FAQ post I wrote a few years ago:

This may seem like an odd question, but it’s actually one I get very often. On my TeXtip twitter account, I include tips on how to create non-English characters such as using \AA to produce Å. Every time someone will ask “Why not use XeTeX and just enter these characters?”

If you can “just enter” non-English characters, then you don’t need a tip. But a lot of people either don’t know how to do this or don’t have a convenient way to do so. Most English speakers only need to type foreign characters occasionally, and will find it easier, for example, to type \AA or \ss than to learn how to produce Å or ß from a keyboard. If you frequently need to enter Unicode characters, and know how to do so, then XeTeX is great.

One does not simply type Unicode characters.

Related posts:

Notes on HTML, XML, TeX, and Unicode

This week’s resource post: some notes on typesetting, Unicode, etc.

See also blog posts tagged LaTeX, HTML, and Unicode.

For daily tips on LaTeX and typography, follow @TeXtip on Twitter.

TeXtip logo

Last week: C++ resources

Next week: Special functions

 

Haskell analog of Sweave and Pweave

Sweave and Pweave are programs that let you embed R and Python code respectively into LaTeX files. You can display the source code, the result of running the code, or both.

lhs2TeX is roughly the Haskell analog of Sweave and Pweave.  This post takes the sample code I wrote for Sweave and Pweave before and gives a lhs2TeX counterpart.

\documentclass{article}
%include polycode.fmt
%options ghci
\long\def\ignore#1{}
\begin{document}

Invisible code that sets the value of the variable $a$.

\ignore{
\begin{code}
a = 3.14
\end{code}
}

Visible code that sets $b$ and squares it. 

(There doesn't seem to be a way to display the result of a block of code directly. 
Seems you have to save the result and display it explicitly in an eval statement.)

\begin{code}
b = 3.15
c = b*b
\end{code}

$b^2$ = \eval{c}

Calling Haskell inline: $\sqrt{2} = \eval{sqrt 2}$

Recalling the variable $a$ set above: $a$ = \eval{a}.

\end{document}

If you save this code to a file foo.lhs, you can run

lhs2TeX -o foo.tex foo.lhs

to create a LaTeX file foo.tex which you could then compile with pdflatex.

One gotcha that I ran into is that your .lhs file must contain at least one code block, though the code block may be empty. You cannot just have code in \eval statements.

Unlike R and Python, the Haskell language itself has a notion of literate programming. Haskell specifies a format for literate comments. lhs2TeX is a popular tool for processing literate Haskell files but not the only one.

Commutative diagrams in LaTeX

There are numerous packages for creating commutative diagrams in LaTeX. My favorite, based on my limited experience, is Paul Taylor’s package. Another popular package is tikz-cd.

To install Paul Taylor’s package on Windows, I created a directory called localtexmf, set the environment variable TEXINPUTS to its location, and copied diagrams.sty file in that directory.

Here are a couple examples, diagrams used in the definition of product and coproduct.

And here’s the LaTeX to produce the diagrams.

\begin{diagram}
& & X & & \\
& \ldTo^{f_1} & \dDashto_f & \rdTo^{f_2} & \\
A & \lTo_{\pi_1} & A\times B & \rTo_{\pi_2} & B \\
\end{diagram}

\begin{diagram}
& & X & & \\
& \ruTo^{f_1} & \uDashto_f & \luTo^{f_2} & \\
A & \rTo_{i_1} & A\oplus B & \lTo_{i_2} & B \\
\end{diagram}

For much more information, see the package page.

RelatedApplied category theory

Unicode to LaTeX

I’ve run across a couple web sites that let you enter a LaTeX symbol and get back its Unicode value. But I didn’t find a site that does the reverse, going from Unicode to LaTeX, so I wrote my own.

Unicode / LaTeX Conversion

If you enter Unicode, it will return LaTeX. If you enter LaTeX, it will return Unicode. It interprets a string starting with “U+” as a Unicode code point, and a string starting with a backslash as a LaTeX command.

screenshot of www.johndcook.com/unicode_latex.png

For example, the screenshot above shows what happens if you enter U+221E and click “convert.” You could also enter infty and get back U+221E.

However, if you go from Unicode to LaTeX to Unicode, you won’t always end up where you started. There may be multiple Unicode values that map to a single LaTeX symbol. This is because Unicode is semantic and LaTeX is not. For example, Unicode distinguishes between the Greek letter Ω and the symbol Ω for ohms, the unit of electrical resistance, but LaTeX does not.

* * *

For daily tips on LaTeX and typography, follow @TeXtip on Twitter.

TeXtip logo

Automatic delimiter sizes in LaTeX

I recently read a math book in which delimiters never adjusted to the size of their content or the level of nesting. This isn’t unusual in articles, but books usually pay more attention to typography.

Here’s a part of an equation from the book:

\varphi^{-1} (\int \varphi(f+g) ,d\mu)

Larger outer parentheses make the equation much easier to read, especially as part of a complex equation. It’s clear at a glance that the function φ-1 applies to the result of the integral.

\varphi^{-1} \left(\int \varphi(f+g) ,d\mu\right)

The first equation was typeset using

\varphi^{-1} ( \int \varphi(f+g) ,dmu )

The latter used left and right to tell LaTeX that the parentheses should grow to match the size of the content between them.

\varphi^{-1} \left( \int \varphi(f+g) ,d\mu \right)

You can use \left and \right with more delimiters than just parentheses: braces, brackets, ceiling, floor, etc. And the left and right delimiters do not need to match. You could make a half-open interval, for example, with \left( on one side and \right] on the other.

For every \left delimiter there must be a corresponding \right delimiter. However, you can make one of the pair empty by using a period as its mate. For example, you could start an expression with \left[ and end it with \right. which would create a left bracket as tall as the tallest thing between that bracket and the corresponding \right. command. Note that \right. causes nothing to be displayed, not even a period.

The most common example of a delimiter with no mate may be a curly brace on the left with no matching brace on the right. In that case you’d need to open with \left{. The backslash in front of the brace is necessary to tell LaTeX that you want a literal brace and that you’re not just using the brace for grouping.

* * *

For daily tips on LaTeX and typography, follow @TeXtip on Twitter.

TeXtip logo

Basics of Sweave and Pweave

Sweave is a tool for embedding R code in a LaTeX file. Pweave is an analogous tool for Python. By putting your code in your document rather than the results of running your code somewhere else, results are automatically recomputed when inputs change. This is especially useful with graphs: rather than including an image into your document, you include the code to create the image.

To use either Sweave or Pweave, you create a LaTeX file and include source code inside. A code block begins with <<>>= and ends with @ on a line by itself. By default, code blocks appear in the LaTeX output. You can start a code block with <<echo=FALSE>>= to execute code without echoing its source. In Pweave you can also use <% and %> to mark a code block that executes but does not echo. You might want to do this at the top of a file, for example, for import statements.

Sweave echos code like the R command line, with > for the command prompt. Pweave does not display the Python >>> command line prompt by default, though it will if you use the option term=TRUE in the start of your code block.

In Sweave, you can use Sexpr to inline a little bit of R code. For example, $x = Sexpr{sqrt(2)}$ will produce x = 1.414…. You can also use Sexpr to reference variables defined in previous code blocks. The Pweave analog uses <%= and %>. The previous example would be $x = <%= sqrt(2) %>$.

You can include a figure in Sweave or Pweave by beginning a code block with <<fig=TRUE, echo=FALSE>>= or with echo=TRUE if you want to display the code that produces the figure. With Sweave you don’t need to do anything else with your file. With Pweave you need to add usepackage{graphicx} at the top.

To process an Sweave file foo.Rnw, run Sweave("foo.Rnw") from the R command prompt. To process a Pweave file foo.Pnw, run Pweave -f tex foo.Pnw from the shell. Either way you get a LaTeX file that you can then compile to a PDF.

Here are sample Sweave and Pweave files. First Sweave:

\documentclass{article}
\begin{document}

Invisible code that sets the value of the variable $a$.

<<<echo=FALSE>>=
a <- 3.14
@

Visible code that sets $b$ and squares it.

<<bear, echo=TRUE>>=
b <- 3.15
b*b
@

Calling R inline: $\sqrt{2} = Sexpr{sqrt(2)}$

Recalling the variable $a$ set above: $a = Sexpr{a}$.

Here's a figure:

<<fig=TRUE, echo=FALSE>>=
x <- seq(0, 6*pi, length=200)
plot(x, sin(x))
@

\end{document}

And now Pweave:

\documentclass{article}
\usepackage{graphicx}
\begin{document}

<%
import matplotlib.pyplot as plt
from numpy import pi, linspace, sqrt, sin
%>

Invisible code that sets the value of the variable $a$.

<<echo=FALSE>>=
a = 3.14
@

Visible code that sets $b$ and squares it.

<<term=True>>=
b = 3.15
print b*b
@

Calling Python inline: $\sqrt{2} = <%= sqrt(2) %>$

Recalling the variable $a$ set above: $a = <%= a %>$.

Here's a figure:

<<fig=True, echo=False>>=
x = linspace(0, 6*pi, 200)
plt.plot(x, sin(x))
plt.show()
@

\end{document}

Related links:

 

The paper is too big

In response to the question “Why are default LaTeX margins so big?” Paul Stanley answers

It’s not that the margins are too wide. It’s that the paper is too big!

This sounds flippant, but he gives a compelling argument that paper really is too big for how it is now used.

As is surely by now well-known, the real question is the size of the text block. That is a really important factor in legibility. As others have noted, the optimum line length is broadly somewhere between 60 characters and 75 characters.

Given reasonable sizes of font which are comfortable for reading at the distance we want to read at (roughly 9 to 12 point), there are only so many line lengths that make sense. If you take a book off your shelf, especially a book that you would actually read for a prolonged period of time, and compare it to a LaTeX document in one of the standard classes, you’ll probably notice that the line length is pretty similar.

The real problem is with paper size. As it happens, we have ended up with paper sizes that were never designed or adapted for printing with 10-12 point proportionally spaced type. They were designed for handwriting (which is usually much bigger) or for typewriters. Typewriters produced 10 or 12 characters per inch: so on (say) 8.5 inch wide paper, with 1 inch margins, you had 6.5 inches of type, giving … around 65 to 78 characters: in other words something pretty close to ideal. But if you type in a standard proportionally spaced font (worse, in Times—which is rather condensed because it was designed to be used in narrow columns) at 12 point, you will get about 90 to 100 characters in the line.

He then gives six suggestions for what to do about this. You can see his answer for a full explanation. Here I’ll just summarize his points.

  1. Use smaller paper.
  2. Use long lines of text but extra space between lines.
  3. Use wide margins.
  4. Use margins for notes and illustrations.
  5. Use a two column format.
  6. Use large type.

Given these options, wide margins (as in #3 and #4) sound reasonable.

* * *

For daily tips on LaTeX and typography, follow @TeXtip on Twitter.

TeXtip logo

Separating presentation from content

In the late ’90s I went to a fair number of Microsoft presentations. One presentation would say “The problem with Technology X is that it mixes presentation and content. We’ve introduced Technology Y to make your code cleaner, separating presentation and content.” A few months later I’d be at another presentation that would announce “The problem with Technology Y is that it mixes presentation and content. We’ve introduced Technology Z …” (Does this remind anyone else of The Cat in the Hat Comes Back?)

When I first learned LaTeX, I was told that one of its strengths is that it separates presentation and content. Then a few years later I hear complaints that the problem with LaTeX is that it mingles presentation and content, unlike XHTML. A few years later, guess what? XHTML mixes presentation and content, so we need something else.

I shut down when I hear someone announce that everything before their product was bad because it mixed presentation and content, and now with their solution, presentation and content will be completely separate.

Sometimes one technology really does make a cleaner separation of presentation and content. But at best the separation is relative. LaTeX separates presentation and content more than Word, though not as much as well-written HTML and CSS, maybe. But presentation and content cannot be entirely separated. Nor is their unanimous agreement on what exactly the dividing line is between the two.

Many people don’t want to separate their presentation and content. They don’t understand why this would be desirable, and they’ll fight against anything designed to encourage separation. Maybe they need to learn the advantages, or maybe they’re just doing the best they can to get their job done and they can’t be bothered with long term advantages that may not materialize.

The principle of separating presentation and content is admirable. It really does have advantages, but it’s easier said than done.

* * *

For daily tips on LaTeX and typography, follow @TeXtip on Twitter.

TeXtip logo

Typesetting “C#” in LaTeX

How do you refer to the C# programming language in LaTeX? Simply typing C# doesn’t work because # is a special character in LaTeX. You could type C#. That works, but it looks a little odd. The number sign is too big and too low.

What about using a musical sharp sign, i.e. C$\sharp$? That also looks a little odd. Even though the language is pronounced “C sharp,” it’s usually written with a number sign, not a sharp.

Let’s look at recommended ways of typesetting C++ to see whether that helps. The top answer to this question on TeX Stack Exchange is to define a new command as follows:

\newcommand{\CC}{C\nolinebreak\hspace{-.05em}\raisebox{.4ex}{\tiny\bf +}\nolinebreak\hspace{-.10em}\raisebox{.4ex}{\tiny\bf +}}

This does several things. First, it prevents line breaks between the constituent characters. It also does several things to the plus signs:

  • Draws them in closer
  • Makes them smaller
  • Raises them
  • Makes them bold

The result is what we’re subconsciously accustomed to seeing in print.

Here’s an analogous command for C#.

\newcommand{\CS}{C\nolinebreak\hspace{-.05em}\raisebox{.6ex}{\tiny\bf \#}}

And here’s the output. The number sign is a little too small.

To make a little larger number sign, replace \tiny with \scriptsize.

Related posts:

For daily tips on LaTeX and typography, follow @TeXtip on Twitter.

TeXtip logo

Bundled versus unbundled version history

The other day I said to a colleague that an advantage to LaTeX over Microsoft Word is that it’s easy to version LaTeX files because they’re just plain text. My colleague had the opposite view. He said that LaTeX was impossible to version because its files are just plain text. How could we interpret the same facts so differently?

I was thinking about checking files in and out of a version control system. With a text file, the version control system can tell you exactly how two versions differ. But with something like a Word document, the system will give an unhelpful message like “binary files differ.”

My colleague was thinking about using the change tracking features of Microsoft Word. He’s accustomed to seeing documents in isolation, such as a file attachment in an email. In that setting, a plain text file has no version history, but a Word document may.

I assumed version information would be external to the document. He assumed the version information would be bundled with the document. My view is typical of software developers. His is typical of everyone else.

These two approaches are analogous to functional programming versus object oriented programming. Version control systems have a functional view of files. The versioning functionality is unbundled from the file content, in part because the content (typically source code files) could be used by many different applications. Word provides a sort of object oriented versioning system, bundling versioning functionality with the data.

As with functional versus object oriented programming, there’s no “right” way to solve this problem, only approaches that work better in different contexts. I much prefer using a version control system to track changes to my files, but that approach won’t fly with people who don’t share a common version control system or don’t use version control at all.

Related posts: